• Title/Summary/Keyword: Perfusion imaging

Search Result 301, Processing Time 0.024 seconds

Stress Testing and Imaging Protocols for Myocardial Perfusion Studies (심근관류영상을 위한 심근부하 방법 및 검사 프로토콜)

  • Kim, Seong-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.179-195
    • /
    • 2009
  • Scince $^{201}$TI was introduced as a myocardial perfusion imaging agent in the early 1970s, scintigraphic evaluation of myocardial perfusion for the diagnosis of coronary artery disease is a valuable noninvasive diagnostic imaging modality. Stress radionuclide myocardial perfusion imaging is widely accepted to have high diagnostic and prognostic use in the assessment of patients with known or suspected coronary artery disease. With wise use of this nonivasive imaging technique, more patients are referred for stress perfusion imaging. Until now various protocols for stress testing and myocardial imaging were developed and used in worldwide. This article presented various protocols of stress testing and myocardial imaging for clinical use.

Understanding of Perfusion MR Imaging (관류자기공명영상의 이해)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Perfusion MR imaging is how to use exogenous and endogenous contrast agent. Exogenous perfusion MRI methods which are dynamic susceptibility contrast using $T2^*$ effect and dynamic contrast-enhanced using T1 weighted image after injection contrast media. An endogenous perfusion MRI method which is arterial spin labeling using arterial blood flow in body. In order to exam perfusion MRI in human, technical access are very important according to disease conditions. For instance, dynamic susceptibility contrast is used in patients with acute stroke because of short exam time, while dynamic susceptibility contrast or dynamic contrast enhancement provides the various perfusion information for patients with tumor, vascular stenosis. Arterial spin labeling is useful for children, women who are expected to be pregnant. In this regard, perfusion MR imaging is required to understanding, and the author would like to share information with clinical users

  • PDF

Hyperperfusion in DWI Abnormality in a Patient with Acute Symptomatic Hypoglycemic Encephalopathy

  • Park, Ji Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.106-108
    • /
    • 2017
  • The perfusion change in acute symptomatic hypoglycemic encephalopathy (ASHE) is not well known. We present the perfusion-weighted imaging of a patient with ASHE. The area of diffusion-weighted imaging abnormalities and adjacent normal-appearing white matter showed increased cerebral blood volume and flow, and shortening of time-to-peak.

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

  • Kim, Min Jeong;Park, Yae Won;Lim, Soo Mee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.56-60
    • /
    • 2018
  • Therapeutic hypothermia in cardiac arrest patients is associated with favorable outcomes mediated via neuroprotective mechanisms. We report a rare case of a 32-year-old male who demonstrated complete recovery of signal changes on perfusion-weighted imaging after therapeutic hypothermia due to cardiac arrest. Brain MRI with perfusion-weighted imaging, performed three days after ending the hypothermia therapy, showed a marked decrease in relative cerebral blood flow (rCBF) and delay in mean transit time (MTT) in the bilateral basal ganglia, thalami, brain stem, cerebellum, occipitoparietal cortex, and frontotemporal cortex. However, no cerebral ischemia was not noted on diffusion-weighted imaging (DWI) or fluid-attenuated inversion recovery (FLAIR) sequences. A follow-up brain MRI after one week showed complete resolution of the perfusion deficit and the patient was discharged without any neurologic sequelae. The mechanism and interpretation of the perfusion changes in cardiac arrest patients treated with therapeutic hypothermia are discussed.

Diagnosis of Coronary Artery Disease Using Myocardial Perfusion SPECT (심근 SPECT를 이용한 관상동맥질환의 진단)

  • Won, Kyoung-Sook;Kim, Hae-Won
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.196-202
    • /
    • 2009
  • Myocardial perfusion scintigraphy is currently by far the most commonly performed cardiac nuclear study, constituting approximately one third of all nuclear medicine procedure. It plays an important role in the diagnosis, prognosis, risk assessment and management of heart disease. Aim of this review is to describe recent evolution of myocardial perfusion imaging on the focus of diagnosis of coronary artery disease. In addition, current status of other imaging modalities will be reviewed.

Radiopharmaceuticals Used in Cardiac Imaging (심장영상에 이용되는 방사성의약품)

  • Hwang, Kyung-Hoon;Chung, Yong-An;Lee, Byeong-Il;Lee, Yu-Kyung;Lee, Min-Kyung;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.174-178
    • /
    • 2009
  • Many radiopharmaceuticals have been developed and wildy used in the imaging cardiac function. Myocardial perfusion imaging (MPI) is a well established noninvasive method of assessing coronary blood flow and has been widely used in patients diagnosed or suspected with coronary artery diseases. The innovation of radiopharmaceuticals used in the cardiac imaging is one of the most important contributors to the development of nuclear cardiology. Thallium-201 and various technetium-99m agents have been globally used for myocardial perfusion SPEG, and N-13 ammonia (13NH3), rubidium-82 (82Rb), 0-15 water (H2150) for myocardial perfusion PET. As well as the cardiac perfusion studies, new radiopharmaceuticals that visualize fat metabolism or receptors of the sympathetic nervous system have successfully been applied to clinical practice. Useful information can be obtained for diagnosing coronary artery disease, evaluating patients' condition, or assessing therapeutic effects. In this review, we describe the characteristics and clinical usefulness of radiopharmaceuticals used for cardiac SPEG and PET.

State of the Art of Imaging Equipment and Tools for Nuclear Cardiology (심장핵의학 검사를 위한 영상장비 및 도구의 최신동향)

  • Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.165-173
    • /
    • 2009
  • Nuclear cardiology in Korea is less active, compared to nuclear oncology, but it has been specialized and ramified. Lately, sophisticated nuclear cardiac imaging methods provide more convenience for patients. It is necessary to accurately estimate the recent progress in the imaging devices for nuclear cardiology. Myocardial perfusion imaging is a well established study to evaluate heart function. Myocardial perfusion SPECT and PET have been used for assessment of coronary artery disease with various radiopharmaceuticals. And of late, the development of advanced imaging devices - multi-pinhole technique and high definition imaging technique - and software made the scanning time shorter and expanded the application field. Therefore, it is required to review the nuclear cardiology hardware/software for the clinical practice and research. In this review, the characteristics about recently-developed SPECT/PET and software for nuclear cardiology are described. It is hoped that this information would contribute to improving the activity of nuclear cardiac research in Korea where the research for the fusion imaging combining a and nuclear imaging is drawing more attention.

Nuclear Cardiology in Acute Coronary Syndrome (급성관상동맹증후군에서 심장핵의학의 이용)

  • Paeng, Jin-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.215-221
    • /
    • 2009
  • Nuclear myocardial perfusion imaging is very effective in the evaluation of patients with suspicious acute coronary syndrome (ACS), for adequate diagnosis and treatment. There have been many clinical evidences to support the efficacy and cost-effectiveness. In addition, many authoritative guidelines support the utility of myocardial perfusion imaging in ACS with an appropriate diagnostic protocol. However, with the development of other cardiac imaging modalities, the choice of modality for the diagnosis of suspicious ACS now depends on the availability of each modality in each institute. Newly developed imaging technologies, especially including molecular imaging, are expected to have great potential not only for diagnosis but also for primary, secondary, and tertiary prevention of ACS.

Lung Perfusion Imaging and $Tc^{99m}-Macroaggregated$ Human Serum Albumin

  • Haider, Kh.H.;Ilyas, M.;Hyder, Q.;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • Lung perfusion scanning, invariably combined with ventilation studies provides a reliable and non-invasive mean to diagnose lung related pathologies despite the availability of modern techniques such as angiography, magnetic resonance imaging, magnetic resonance angiography, and helical (spiral) computed tomography. The technique involves the generation of images by radiations emitted from radioisotopes introduced in to the lungs. Various radiopharmaceuticals have been proposed and designed to incorporate $Tc^{99m}$ in to macroparticulate form for lung perfusion imaging. However, most of these have associated difficulties such as reproducibility of the product with regards to particle size distribution and poor elimination from the lung capillary bed. $Tc^{99m}$ macroaggregated albumin $(Tc^{99m}-MAA)$ is used extensively for clinical lung perfusion imaging and is considered as the radiopharmaceutical of choice. It is non-toxic, safe, and being biodegradable, is easily eliminated from the lung capillary bed by proteolytic enzyme metabolism and by mechanical forces due to lung movement.

  • PDF

Overview of Arterial Spin Labeling Perfusion MRI (동맥스핀표지 관류 자기공명영상의 개요)

  • Kang, Sung-Jin;Han, Man-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.145-152
    • /
    • 2017
  • The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.