• 제목/요약/키워드: Performance-Based Design Method

검색결과 3,696건 처리시간 0.024초

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

성능위주설계를 위한 화재감지기배치의 공학적연구 (Automatic Fire Detector Spacing Calculation for Performance Based Design)

  • 박동하
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.15-23
    • /
    • 2010
  • 현재의 화재안전기준에서 규정하는 화재감지기의 배치방법은 면적에 따라 규정된 숫자를 적정하게 배치하는 수준이다. 이 기준은 과학적인 근거는 가지고 있지 못하다. 외국의 기준을 도입하여 그에 따라서 설치하고 있을 뿐이다. 소방시설을 설계하는 방법에는 화재안전기준과 같이 명문화 된 규정에 따르는 규범위주설계(Prescriptive-based)와 화재역학, 구조역학, 재료역학, 유체역학, 열역학 등 공학적 지식을 바탕으로 하는 성능위주설계(Performance-based design)가 있다. 현재로서는 성능위주설계가 활성화 되지 않았지만, 최근 소방시설공사업법은 성능위주설계방법을 이용하여 소방시설을 설계 할 수 있도록 개정('05. 8. 4)되었으며 그 시행령('07, 1. 24)에서 성능위주설계를 적용할 특정소방대상물의 범위를 정하고 있다. 이러한 시점에서 자동화재탐지설비의 화재감지기를 최적의 위치 및 거리에 설치하기 위하여 그에 대한 공식의 도입과 공식을 Software로 계산할 수 있도록 시뮬레이터를 제작하여 계산하고 규범위주설계에 따라 배치한 화재감지기의 상태와 비교 분석하며 향후 성능위주설계 방법으로서 정착시키기 위하여 연구를 시도하였다.

다특성 파라미터설계 방법의 비교 연구 (A Comparison of Parameter Design Methods for Multiple Performance Characteristics)

  • 소우진;염봉진
    • 대한산업공학회지
    • /
    • 제38권3호
    • /
    • pp.198-207
    • /
    • 2012
  • In product or process parameter design, the case of multiple performance characteristics appears more commonly than that of a single characteristic. Numerous methods have been developed to deal with such multi-characteristic parameter design (MCPD) problems. Among these, this paper considers three representative methods, which are respectively based on the desirability function (DF), grey relational analysis (GRA), and principal component analysis (PCA). These three methods are then used to solve the MCPD problems in ten case studies reported in the literature. The performance of each method is evaluated for various combinations of its algorithmic parameters and alternatives. Relative performances of the three methods are then compared in terms of the significance of a design parameter and the overall performance value corresponding to the compromise optimal design condition identified by each method. Although no method is significantly inferior to others for the data sets considered, the GRA-based and PCA-based methods perform slightly better than the DF-based method. Besides, for the PCA-based method, the compromise optimal design condition depends much on which alternative is adopted while, for the GRA-based method, it is almost independent of the algorithmic parameter, and therefore, the difficulty involved in selecting an appropriate algorithmic parameter value can be alleviated.

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

변위계수법을 활용한 최적 내진 성능기반 설계기법 개발 (Development of Optimal Performance based Seismic Design Method using Displacement Coefficient Method)

  • 이현국;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2004
  • Recently, performance based seismic design (PBSD) methods in numerous forms have been suggested and widely studied as a new concept of seismic design. The PBDSs are far from being practical due to complexity of algorithms resided in the design philosophy In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this paper, strength design criteria, stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 9-story two-dimensional steel frame structures.

  • PDF

2차원 철골 구조물의 최적 성능기반 내진설계법 개발 (Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames)

  • 권봉근;이현국;권윤한;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Fragility Method를 적용한 성능기반형설계기법의 개발 (Development of Performance Based Design Method based on Application of Fragility Method)

  • 김장호;이정;박정호;김윤호;이경민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.310-313
    • /
    • 2006
  • The purpose of this study is to develop Performance Based Design Method based on application of Fragility Method. Fragility Method has been used in predicting failure of structure due to seismic action, However, development of Fragility Curve based on material or construction for PBD is developed, This paper suggests that Fragility Method can be modified for PBD and can assess the performance of concrete material or construction.

  • PDF

Deformation-based seismic design of concrete bridges

  • Gkatzogias, Konstantinos I.;Kappos, Andreas J.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.1045-1067
    • /
    • 2015
  • A performance-based design (PBD) procedure, initially proposed for the seismic design of buildings, is tailored herein to the structural configurations commonly adopted in bridges. It aims at the efficient design of bridges for multiple performance levels (PLs), achieving control over a broad range of design parameters (i.e., strains, deformations, ductility factors) most of which are directly estimated at the design stage using advanced analysis tools (a special type of inelastic dynamic analysis). To evaluate the efficiency of the proposed design methodology, it is applied to an actual bridge that was previously designed using a different PBD method, namely displacement-based design accounting for higher mode effects, thus enabling comparison of the alternative PBD approaches. Assessment of the proposed method using nonlinear dynamic analysis for a set of spectrum-compatible motions, indicate that it results in satisfactory performance of the bridge. Comparison with the displacement-based method reveals significant cost reduction, albeit at the expense of increased computational effort.