• Title/Summary/Keyword: Performance verification

Search Result 2,551, Processing Time 0.031 seconds

The Development of Tidal Power System Can be Installed in Existing Dykes - The Open Channel Experimental Verification (기존 방조제에 설치 가능한 조력발전 장치 개발 - 개수로 현장실험 검증)

  • HyukJin Choi;Dong-Hui Ko;Nam-Sun Oh;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • As problems such as difficulties in securing stable energy resources and global warming due to the emission of greenhouse gases due to the use of fossil fuels have emerged, interest in the development of renewable energy is increasing. Since the tidal phenomenon has a regularity that occurs regularly with a certain period, it is possible to predict accurately in advance, which has a advantage in terms of energy recovery. Therefore, various methods have been devised to utilize the tide as an energy source. Tidal power using barrages is a representative method that is widely operated, but the promotion of tidal power generation projects is being delayed or stopped due to the decrease in the level of water in the tidal basin, changes in water quality and in the ecosystem. In this study, a field experiment was conducted to develop and verify the performance of a tidal power device applicable to sea areas where dykes are already installed. As a result of carrying out four cases of experiments using two water tanks, pipe lines, open channels, weirs, and water turbine and generator, the possibility of developing a power generation system capable of 10 kW output or more and 60% efficiency or more was confirmed. These research results can be used for small-scale tidal power by utilizing the existing dykes.

Developing system of forest habitat quality assessment for endangered species (멸종위기 야생생물 산림 서식지 질적 평가 체계 개발)

  • Kwang Bae Yoon;Sunryoung Kim;Seokwan Cheong;Jinhong Lee;Jae Hwa Tho;Seung Hyun Han
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.307-315
    • /
    • 2022
  • In terms of habitat conservation, it is essential to develop a habitat assessment system that can evaluate not only the suitability of the current habitat, but also the health and stability of the habitat. This study aimed to develop a methodology of habitat quality assessment for endangered species by analyzing various existing habitat assessment methods. The habitat quality assessment consisted of selecting targeted species, planning of assessment, selecting targeted sites, assessing performance, calculating grade, and expert verification. Target sites were selected separately from core and potential habitats using a species distribution model or habitat suitability index. Habitat assessment factors were classified into ecological characteristic, landscape characteristic, and species-habitat characteristic. Ecological characteristic consisted of thirteen factors related to health of tree, vegetation, and soil. Landscape characteristic consisted of five factors related to fragment and connectivity of habitat. Species-habitat characteristic consisted of factors for evaluating habitat suitability depending on target species. Since meanings are different depending on characteristics, habitat quality assessment of this study could be used by classifying results for each characteristic according to various assessment purposes, such as designation of alternative habitats, assessment of restoration project, and protected area valuation for endangered species. Forest habitat quality assessment is expected to play an important role in conservation acts of endangered species in the future through continuous supplementation of this system in regard to quantitative assessment criteria and weighting for each factor with an influence.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Data analysis by Integrating statistics and visualization: Visual verification for the prediction model (통계와 시각화를 결합한 데이터 분석: 예측모형 대한 시각화 검증)

  • Mun, Seong Min;Lee, Kyung Won
    • Design Convergence Study
    • /
    • v.15 no.6
    • /
    • pp.195-214
    • /
    • 2016
  • Predictive analysis is based on a probabilistic learning algorithm called pattern recognition or machine learning. Therefore, if users want to extract more information from the data, they are required high statistical knowledge. In addition, it is difficult to find out data pattern and characteristics of the data. This study conducted statistical data analyses and visual data analyses to supplement prediction analysis's weakness. Through this study, we could find some implications that haven't been found in the previous studies. First, we could find data pattern when adjust data selection according as splitting criteria for the decision tree method. Second, we could find what type of data included in the final prediction model. We found some implications that haven't been found in the previous studies from the results of statistical and visual analyses. In statistical analysis we found relation among the multivariable and deducted prediction model to predict high box office performance. In visualization analysis we proposed visual analysis method with various interactive functions. Finally through this study we verified final prediction model and suggested analysis method extract variety of information from the data.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

Study on Security Policy Distribute Methodology for Zero Trust Environment (제로 트러스트 환경을 위한 보안 정책 배포 방법에 대한 연구)

  • Sung-Hwa Han;Hoo-Ki Lee
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.93-98
    • /
    • 2022
  • Information service technology continues to develop, and information service continues to expand based on the IT convergence trend. The premeter-based security model chosen by many organizations can increase the effectiveness of security technologies. However, in the premeter-based security model, it is very difficult to deny security threats that occur from within. To solve this problem, a zero trust model has been proposed. The zero trust model requires authentication for user and terminal environments, device security environment verification, and real-time monitoring and control functions. The operating environment of the information service may vary. Information security management should be able to response effectively when security threats occur in various systems at the same time. In this study, we proposed a security policy distribution system in the object reference method that can effectively distribute security policies to many systems. It was confirmed that the object reference type security policy distribution system proposed in this study can support all of the operating environments of the system constituting the information service. Since the policy distribution performance was confirmed to be similar to that of other security systems, it was verified that it was sufficiently effective. However, since this study assumed that the security threat target was predefined, additional research is needed on the identification method of the breach target for each security threat.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

Development of a Signal Acquisition Device to Verify the Applicability of Millimeter Wave Tracking Radar Transmission and Receiving Components (밀리미터파 추적레이더 송·수신 구성품의 적용성 검증을 위한 신호획득장치 개발)

  • Jinkyu Choi;Youngcheol Shin;Soonil Hong;Han-Chun Ryu;Hongrak Kim;Jihan Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.185-190
    • /
    • 2023
  • Recently, tracking radar requires the development of millimeter wave tracking radar to acquire target information with high resolution in various environments. The development of millimeter wave tracking radar requires the development of transmission and receiving components that can be applied to the millimeter wave tracking radar, as well as verification of the applicability of the tracking radar. In order to verify the applicability of the developed transmitting and receiving components, it is necessary to develop a signal acquisition device that can control the transmitting and receiving components using the operating concept of a tracking radar and check the status of the received signal. In this paper, we implemented a signal acquisition device that can confirm the applicability of components developed for millimeter wave tracking radar. The signal acquisition device was designed to process in real time the OOOMHz center frequency and OOMHz bandwidth signals input from 4 channels to verify the received signal. In addition, component control applying the tracking radar operation concept was designed to be controlled by communication such as RS422, RS232, and SPI and generation of control signals for the transmission and receiving time. Lastly, the implemented signal acquisition device was verified through a signal acquisition device performance test.

Methodology of Test for sUAV Navigation System Error (소형무인항공기 항법시스템오차 시험평가 방법)

  • SungKwan Ku;HyoJung Ahn;Yo-han Ju;Seokmin Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.510-516
    • /
    • 2021
  • Recently, the range of utilization and demand for unmanned aerial vehicle (UAV) has been continuously increasing, and research on the construction of a separate operating system for low-altitude UAV is underway through the development of a management system separate from manned aircraft. Since low-altitude UAVs also fly in the airspace, it is essential to establish technical standards and certification systems necessary for the operation of the aircraft, and research on this is also in progress. If the operating standards and certification requirements of the aircraft are presented, a test method to confirm this should also be presented. In particular, the accuracy of small UAV's navigation required during flight is required to be more precise than that of a manned aircraft or a large UAV. It was necessary to calculate a separate navigation error. In this study, we presented a test method for deriving navigation errors that can be applied to UAVs that have difficulty in acquiring long-term operational data, which is different from existing manned aircraft, and conducted verification tests.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.