Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.3.307

Developing system of forest habitat quality assessment for endangered species  

Kwang Bae Yoon (Division of Restoration Strategy, National Institute of Ecology)
Sunryoung Kim (Division of Restoration Strategy, National Institute of Ecology)
Seokwan Cheong (Division of Restoration Strategy, National Institute of Ecology)
Jinhong Lee (Division of Restoration Strategy, National Institute of Ecology)
Jae Hwa Tho (Division of Restoration Strategy, National Institute of Ecology)
Seung Hyun Han (Forest Technology and Management Research Center, National Institute of Forest Science)
Publication Information
Korean Journal of Environmental Biology / v.40, no.3, 2022 , pp. 307-315 More about this Journal
Abstract
In terms of habitat conservation, it is essential to develop a habitat assessment system that can evaluate not only the suitability of the current habitat, but also the health and stability of the habitat. This study aimed to develop a methodology of habitat quality assessment for endangered species by analyzing various existing habitat assessment methods. The habitat quality assessment consisted of selecting targeted species, planning of assessment, selecting targeted sites, assessing performance, calculating grade, and expert verification. Target sites were selected separately from core and potential habitats using a species distribution model or habitat suitability index. Habitat assessment factors were classified into ecological characteristic, landscape characteristic, and species-habitat characteristic. Ecological characteristic consisted of thirteen factors related to health of tree, vegetation, and soil. Landscape characteristic consisted of five factors related to fragment and connectivity of habitat. Species-habitat characteristic consisted of factors for evaluating habitat suitability depending on target species. Since meanings are different depending on characteristics, habitat quality assessment of this study could be used by classifying results for each characteristic according to various assessment purposes, such as designation of alternative habitats, assessment of restoration project, and protected area valuation for endangered species. Forest habitat quality assessment is expected to play an important role in conservation acts of endangered species in the future through continuous supplementation of this system in regard to quantitative assessment criteria and weighting for each factor with an influence.
Keywords
ecological characteristic; endangered species; forest habitat; habitat quality assessment; landscape analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Guisan A and NE Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135:147-186. https://doi.org/10.1016/S0304-3800(00)00354-9   DOI
2 Han SH, JH Kim, WS Kang, JH Hwang, KH Park and CB Kim. 2019. Monitoring soil characteristics and growth of Pinus densiflora five years after restoration in the Baekdudaegan ridge. Korean J. Environ. Ecol. 33:453-461. https://doi.org/10.13047/KJEE.2019.33.4.453   DOI
3 He J, J Huang and C Li. 2017. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 366:58-67. https://doi.org/10.1016/j.ecolmodel.2017.10.001   DOI
4 IUCN Red List version 2022-1. International Union for Conservation of Nature. https://www.iucn.org/press-release/202207/migratory-monarch-butterfly-now-endangerediucn-red-list. Date/time: 3 Aug, 2022, 9 am.
5 Jung J, Y Shimizu, K Omasa, S Kim and S Lee .2016. Developing and testing a habitat suitability index model for Korean water deer (Hydropotes inermis argyropus) and its potential for landscape management decisions in Korea. Anim. Cells Syst. 20:218-227. https://doi.org/10.1080/19768354.2016.1210228   DOI
6 Kangas J, R Store, P Leskinene and L Mehtatalo. 2000. Improving the quality of landscape ecological forests planning by utilizing advanced decision-support tool. For. Ecol. Manage. 132:157-171. https://doi.org/10.1016/S0378-1127(99)00221-2   DOI
7 Kim HG, EJ Lee, C Park, KS Lee, DK Lee, WS Lee and JU Kim. 2016. Modeling the habitat of the red-crowned crane (Grus japonensis) wintering in Cheorwon-Gun to support decision making. Sustainability 8:576. https://doi.org/10.3390/su8060576   DOI
8 Kim JY, JG Kim, DY Bae, HJ Kim, JE Kim, HS Lee, JY Lim and KG An. 2020. International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models. Korean J. Environ. Biol. 38:634-649. https://doi.org/10.11626/KJEB.2020.38.4.634   DOI
9 Korea Forest Service. 2020. 2020 Statistical Yearbook of Forestry. Korea Forest Service. Daejeon, Korea. p. 40.
10 Liana W, H Jean-Marc and H Michael. 2013. Evaluating ecological restoration success: A review of the literature. Restor. Ecol. 21:537-543. https://doi.org/10.1111/rec.12028   DOI
11 Liang J, S Hua, G Zeng, Y Yuan, X Lai, X Li, F Li, H Wu, L Huang and X Yu. 2015. Application of weight method based on canonical correspondence analysis for assessment of Anatidae habitat suitability: A case study in East Dongting Lake, Middle China. Ecol. Eng. 77:119-126. https://doi.org/10.1016/j.ecoleng.2015.01.016   DOI
12 Ministry of Environment(ME). 2011. A Study on Plan Preparation for Habitat Suitability Assessment of Endangered Species by Development Project. Ministry of Environment. Sejong, Korea. pp. 60-63.
13 NIFOS. 2017. Development of Monitoring Indicators and Evaluation Techniques for Forest Health. National Institute of Forest Science. Seoul. pp. 35-57.
14 Park T, H Jang, SE Eom, K Son and JJ Park. 2022. Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt. Korean J. Environ. Biol. 40:214-223. https://doi.org/10.11626/KJEB.2022.40.2.214   DOI
15 Ross S, JM Costanzi, MA Jahdhami, HA Rawahi and M Ghazali. 2020. First evaluation of the population structure, genetic diversity and landscape connectivity of the Endangered Arabian tahr. Mamm. Biol. 100:659-673. https://doi.org/10.1007/s42991-020-00072-4   DOI
16 Salsabila R, H Hariyadi and N Santoso. 2021. Tree health management strategy in Cianjur urban forest. Jurnal Sylva Lestari 9:86-103. https://doi.org/10.23960/jsl1986-103   DOI
17 State of Queensland. 2020. Guide to Determining Terrestrial Habitat Quality. Queensland Government. Australia.
18 Santruckova H, E Cienciala, J Kana and J Kopacek. 2019. The chemical composition of forest soils and their degree of acidity in Central Europe. Sci. Total Environ. 687:96-103. https://doi.org/10.1016/j.scitotenv.2019.06.078   DOI
19 Sharp, R. HT Tallis, T Ricketts, AD Guerry, SA Wood, R Chaplin-Kramer, E Nelson, D Ennaanay, S Wolny, N Olwero, K Vigerstol, D Pennington, G Mendoza, J Aukema, J Foster, J Forrest, D Cameron, K Arkema, E Lonsdorf, C Kennedy, G Verutes, CK Kim, GGuannel, M Papenfus, J Toft, M Marsik, J Bernhardt, R Griffin, K Glowinski, N Chaumont, A Perelman, M Lacayo, L Mandle, R Griffin and P Hamel. 2014. InVEST Tip User's Guide. The Natural Capital Project, Stanford University. Stanford, CA.
20 State of Queensland. 2015. BioCondition (A Condition Assessment Framework for Terrestrial Biodiversity in Queensland). Queensland Government. Australia. pp. 27-33.
21 Stiver SJ, ET Rinkes, DE Naugle, PD Makela, DA Nance and JW Karl. 2015. Sage-Grouse Habitat Assessment Framework: A Multiscale Assessment Tool. Technical Reference 6710-1. Bureau of Land Management and Western Association of Fish and Wildlife Agencies. Denver, CO. pp. 9-11.
22 Terrado M, S Sabater, B Chaplin-Kramer, L Mandle, G Ziv and V Acuna. 2016. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540:63-70. https://doi.org/10.1016/j.scitotenv.2015.03.064   DOI
23 Wolf J, R Baker and E Reed. 2012. An assessment of vegetation cover for grassland bird breeding habitat in southeastern Wisconsin. Bird Popul. 11:22-29.
24 Yang X, J Fan and SB Jones. 2018. Effect of soil texture on estimates of soil-column carbon dioxide flux comparing chamber and gradient methods. Vadose Zone J. 17:1-9. https://doi.org/10.2136/vzj2018.05.0112   DOI
25 Chau JF, AC Bagtzoglou and MR Willig. 2011. The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensics 12:333-341. https://doi.org/10.1080/15275922.2011.622348   DOI
26 Zhang W, B Hu, M Woods and G Brown. 2017. Characterizing forest succession stages for wildlife habitat assessment using multispectral airborne imagery. Forests 8:234. https://doi.org/10.3390/f8070234   DOI
27 Zuquim G, FRC Costa, H Tuomisto, GM Moulatlet and FOG Figueiredo. 2020. The importance of soils in predicting the future of plant habitat suitability in a tropical forest. Plant Soil 450:151-170. https://doi.org/10.1007/s11104-018-03915-9    DOI
28 Beier P and RF Noss. 1998. Do habitat corridors provide connectivity? Conserv. Biol. 12:1241-1252. https://doi.org/10.1111/j.1523-1739.1998.98036.x   DOI
29 Evans MC, JEM Watson, RA Fuller, O Venter, SC Bennett, PR Marsack and HP Possingham. 2011. The spatial distribution of threats to species in Autralia. Bioscience 61:281-289. https://doi.org/10.1525/bio.2011.61.4.8   DOI
30 Fahrig L. 2018. Habitat fragmentation: A long and tangled tale. Glob. Ecol. Biogeogr. 28:33-41. https://doi.org/10.1111/geb.12839   DOI