• Title/Summary/Keyword: Performance state

Search Result 7,984, Processing Time 0.037 seconds

Algorithm and Performance Evaluation of High-speed Distinction for Condition Recognition of Defective Nut (불량 너트의 상태인식을 위한 고속 판별 알고리즘 및 성능평가)

  • Park, Tae-Jin;Lee, Un-Seon;Lee, Sang-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.895-904
    • /
    • 2011
  • In welding machine that executes existing spot welding, wrong operation of system has often occurs because of their mechanical motion that can be caused by a number of supply like the welding object. In exposed working environment for various situations such as worker or related equipment moving into any place that we are unable to exactly distinguish between good and not condition of nut. Also, in case of defective welding of nut, it needs various evaluation and analysis through image processing because the problem that worker should be inspected every single manually. Therefore in this paper, if the object was not stabilization state correctly, we have purpose to algorithm implementation that it is to reduce the analysis time and exact recognition as to improve system of image processing. As this like, as image analysis for assessment whether it is good or not condition of nut, in his paper, implemented algorithms were suggested and list by group and that it showed the effectiveness through more than one experiment. As the result, recognition rate of normality and error according to the estimation time have been shown as 40%~94.6% and 60%~5.4% from classification 1 of group 1 to classification 11 of group 5, and that estimation time of minimum, maximum, and average have been shown as 1.7sec.~0.08sec., 3.6sec.~1.2sec., and 2.5sec.~0.1sec.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.

Accuracy of dental model based on the state-of-the-art manufacturing technique (첨단 제조기술 기반으로 제작된 치과용 모형의 정확도에 관한 연구)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.693-700
    • /
    • 2020
  • This study compared the accuracy and reliability of definitive casts fabricated from a digital impression and conventional impression technique. A master model with the prepared upper full-arch tooth was used. Samples of ten plaster models and ten polyurethane models were duplicated using a selected standard master model. Six linear measurements were recorded between the landmarks, directly on each of the stone models and the polyurethane models on two occasions by a double examiner. The Wilcoxon signed-rank test, interclass correlation coefficient (ICC), measurement error (MSE), and limit of agreement (LoA) were used for statistical analysis. The ICC ranged from 0.76 to 0.99 when comparing the stone models and polyurethane models. The mean difference between the stone models and polyurethane models ranged from 0.09mm to 0.20mm, suggesting that stone models might be slightly larger than polyurethane models. Based on this study, the accuracy of the polyurethane models in evaluating the performance of an oral scanner and subtractive technology was acceptable. Further studies will be needed on patient subjects under clinical conditions that may involve missing or malpositioned teeth and fixed dental prostheses because this study was limited to use a standard master model and duplicated sample models in a laboratory setting.

Design of an Active Shaft Grounding System for the Elimination of Alternating Electromagnetic Field in Vessel (선체 교류 전자장 제거를 위한 능동 축 접지 시스템 설계)

  • Kim, Tae-kue;Ahn, Ho-kyun;Yoon, Tae-sung;Park, Seung-kyu;Kwak, Gun-pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1515-1524
    • /
    • 2015
  • Recently, for the purpose of preventing the corrosion of a vessel, the electrical corrosion protection device that prevents the corrosions of the hull and the propeller is widely used. However, the electrical corrosion protection method artificially emits the current into the seawater around the hull using the power supply in order to make the hull and propeller be in the state of not being corrosion, so that electromagnetic field is generated outside the hull by the current emitted into the seawater. In this paper, the static and alternating constituents of the electromagnetic field generated in underwater outside the hull are analyzed and a countermeasure is investigated to reduce the strength of the electromagnetic field. In conventional shaft grounding system, the shaft potential is maintained above at least 100mV and the alternating current component constitutes more than 10% of the total current. However, in this paper, a control system was designed in order that the alternating current component and the shaft potential which generate electromagnetic field are maintained within 1% and 2mV respectively, and the performance was verified by simulation.

PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter (PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3587-3593
    • /
    • 2009
  • Nowadays, the PV systems have been focused on the interconnection between the power source and the grid. The PV inverter, either single-phase or three-phase, can be considered as the core of the whole system because of an important role in the grid-interconnecting operation. An important issue in the inverter control is the load current regulation. In the literature, the Proportional+Integral (PI) controller, normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an ac system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. By comparison with the PI controller, the Proportional+Resonant (PR) controller can introduce an infinite gain at the fundamental ac frequency; hence can achieve the zero steady-state error without requiring the complex transformation and the dq-coupling technique. In this paper, a PR controller is designed and adopted for replacing the PI controller. Based on the theoretical analyses, the PR controller based control strategy is implemented in a 32-bit fixed-point TMS320F2812 DSP and evaluated in a 3kW experimental prototype Photovoltaic (PV) power conditioning system (PCS). Simulation and experimental results are shown to verify the performance of implemented control scheme in PV PCS.

A Brief Review on Uncertainty Analysis for the WIPP PA (EPA 규제에 대한 WIPP 사이트 성능평가의 불확실성 분석에 관한 검토)

  • 이연명;강철형;한경원
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.52-69
    • /
    • 2002
  • The WIPP (Waste Isolation Pilot Plant), located 42km east of Carlsbad, New Mexico (NM), in bedded salt 655m below the surface, is a mined repository constructed by the US DOE for the permanent disposal of transuranic (TRU) wastes generated by activities related to defence of the US since 1970. Its historical disposal operation began in March 1999 following receipt of a final permit from the State of NM after a positive certification decision for the WIPP was issued by the EPA in 1998, as the first licensed facility in the US for the deep geologic disposal of radioactive wastes. The CCA (Compliance Certification Application) for the WIPP that the DOE submitted to the EPA in 1966 was supported by an extensive performance assessment (PA) carried out by Sandia National Laboratories (SNL), with so-called 1996 PA. Even though such PA methodologies could be greatly different from the way we consider for HLW disposal in Korea largely due to quite different geologic formations in which repository are likely to be located, a review on lots of works done through the WIPP PA studies could be the most important lessons that we can learn from in view of current situation in Korea where an initial phase of conceptual studies on HLW disposal has been just started. The objective of this art report is an overview of the methodology used in the recent WIPP PA to support the US DOE WIPP CCA and some relevant results completed by SNL.

Analysis on the Ventilation Performance of Single-span Tomato Greenhouse with Roof Windows (천창을 설치한 토마토 재배 단동 온실의 환기성능 분석)

  • Nam, Sang-Woon;Kim, Young-Shik;Both, Arend-Jan
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.78-82
    • /
    • 2011
  • Ventilation rates, inside and outside weather data were measured in a arch-shape single-span plastic greenhouse growing tomatoes. On the roof of the experimental greenhouse, round windows which have a diameter of 0.6 m were installed at intervals of 8m. It showed that the number of air changes in this greenhouse were average 0.17 volumes per minute and in the range of 0.02 to 0.32 volumes per minute. These air changes are insufficient to meet the recommended ventilation rate for commercial greenhouses, and it is estimated that interval of 6 m is appropriate for spring or fall season. For summer season, it is necessary to narrow the space or to enlarge the open area of roof windows. Using the heat balance model, the evapotranspiration coefficients of greenhouse tomatoes were estimated from experimental ventilation data, overall heat transfer and solar radiation. It showed that the evapotranspiration coefficients were average 0.62 and in the 0.39 to 0.85 range. We suggest applying 0.6 as the evapotranspiration coefficient in design of ventilation for the single-span tomato greenhouses.

Clinical Characteristics of Haenyeo with Depressive Disorders (해녀 우울장애 환자의 임상적 특징)

  • Park, Joon Hyuk;Jun, Byoung Sun;Lee, Chang In;Kim, Moon-Doo;Jeong, Ji Woon;Jung, Young-Eun
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.2
    • /
    • pp.63-68
    • /
    • 2016
  • Objectives Haenyeo are Korean professional women breath-hold divers in Jeju island. The aim of this study was to investigate the clinical characteristics of depressed Haenyeo group, compared to non-Haenyeo depressed group. Methods This study included 75 Haenyeo and 340 non-Haenyeo with depressive disorders recruited from the Dementia Early Detection Program in Jeju island. Structural diagnostic interviews were performed using the Korean version of Mini International Neuropsychiatric Interview. All patients completed the questionnaires, including the Subjective Memory Complaints Questionnaire (SMCQ), the Patient Health Questionnaire-15 (PHQ-15), and the Blessed dementia scale. Depression was evaluated by the Korean version of short form the Geriatric Depression Scale (K-SGDS) and cognition was assessed by the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) assessment packet. Results Although the mean scores of the K-SGDS were similar between Haenyeo and non-Haenyeo depressed groups, the Haenyeo group showed a higher mean score on the PSQ-15 (p < 0.001, ANCOVA adjusting for age, the K-SGDS and education). The Haenyeo group showed poorer performance on the Korean Version of Frontal Assessment Batter (p < 0.001), the Mini-Mental State Examination in the Korean version of the CERAD Assessment Packet (p < 0.018), the word fluency test (p < 0.001), and the word list memory test (p = 0.012) in ANCOVA adjusting for age and education. The mean SMCQ score was higher in the Haenyeo depressed group than in the non-Haenyeo depressed group. Conclusions The Haenyeo depressed group shows cognitive dysfunction, especially frontal lobe dysfunction, compared to the non-Haenyeo depressed group, indicating the Haenyeo depressed group may have more severe frontolimbic dysfunction due to chronic exposure to hypoxia. The Haenyeo depressed group suffers more somatic symptoms than the non-Haenyeo depressed group.

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Channel and Data Analysis System for Digital TV Broadcasting Using Modified Hilbert Transform (변형된 힐버트 변환을 이용한 디지털 TV 방송 채널 및 데이터 분석 시스템)

  • Suh, Young-Woo;Lee, Jae-Kwon;Mok, Ha-Kyun;Choi, Jin-Yong;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.438-449
    • /
    • 2009
  • To analyze reception environments of ATSC Digital TV, CIR (Channel Impulse Response) analysis systems are widely applied. The receiving performances of conventional CIR analysis systems are not as good as those of commercial state-of-the-art receivers. There are difficulties in measuring and analyzing reception problems caused by multi-path interferences. To solve these problems, commercial DTV chip sets embedded CIR analysis system is proposed. Generally, commercial chip sets provide baseband (In-phase) channel data and field or segment sync data. For more precise analysis of measured I channel data, it is necessary to extract Q (quadrature) channel data components as well. This paper presents the technical requirements of CIR analysis system for DTV. In order to satisfy such requirements and measure more accurate magnitude and phase of CIR, a method to derive the quadrature data from the measured in-phase channel data is proposed. The proposed channel analysis system is implemented with a commercial DTV chip set and expedites the data analysis for use on DTV field test vehicles. Computer simulation and laboratory test results are provided to demonstrate the performance of the proposed channel analysis system.