• Title/Summary/Keyword: Performance state

Search Result 7,939, Processing Time 0.033 seconds

A Study on the Development of New State Estimation Algorithm by the Decomposition Method of Linear Transformation (선형변환분할 기법에 의한 새로운 상태추정 앨고리즘 개발에 관한 연구)

  • 송길영;김영한;최상규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.4
    • /
    • pp.148-155
    • /
    • 1986
  • This paper presents a new decoupled power system state estimation method. The decoupling is achieved via simple linear transformation on power measurements in contrast with the modified fast decoupled state estimation method which assumes decoupling by direct negligence of the off-diagonal blocks of the observation functions. The new estimation method is compared with the modified decoupled state estimation method against IEEE-14 bus model power system and 25 bus model power system in several system conditions. It is observed that the proposed method shows better convergence performance and filtering performance than a modified fast decoupled state estimation.

  • PDF

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Battery State-of-Health Estimation Method based on Deep-learning and Feature Engineering (딥러닝과 특징 추출 기반 배터리 노화 상태 추정 방법)

  • Chang, Moon-Seok;Lee, Gang-Seok;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.332-338
    • /
    • 2022
  • This study proposes a battery state-of-health estimation method by applying a feature extraction technique. The technique that can improve estimation performance is the process of identifying and extracting meaningful data. To apply a data-driven-based aging state estimation method to batteries, health indicators are used as training data. However, limitations occur in extracting health indicators from charge/discharge cycles. This study proposes a deep-learning-based battery state-of-health estimation method that applies feature extraction techniques to compensate for this problem. According to the performance evaluation result of the proposed method, it has a low estimation error of 0.3887% based on an absolute error evaluation method.

Mammographic Screening of Women Attending a Reference Service Center in Southern Brazil

  • Lopes, Tiara Cristina Romeiro;Gravena, Angela Andreia Franca;de Oliveira Demitto, Marcela;Brischiliari, Sheila Cristina Rocha;Borghesan, Deise Helena Pelloso;Agnolo, Catia Millene Dell;de Barros Carvalho, Maria Dalva;Pelloso, Sandra Marisa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1385-1391
    • /
    • 2016
  • Background: To investigate the prevalence of and factors associated with performance of annual mammography by women above 40 years of age. Materials and Methods: This cross-sectional retrospective study was conducted at an oncology reference service in Southern Brazil from October 2013 to October 2014 with 525 women aged 40 years or older. Results: The prevalence of annual mammography was 54.1%; annual mammographic screening was performed for women without private medical insurance, who were under hormone replacement therapy and who had used contraception in the past. An association was found between non-performance of breast clinical and self-examination and non-performance of mammographic screening. Conclusions: Use of mammography for breast cancer screening in the public health care setting proved to be accessible; nevertheless, the proportion of screened women was low, and they exhibited poor adherence to the basic measures of care recommended for breast assessment. Thus, control of breast cancer requires implementing actions targeting the population most vulnerable to non-adherence to screening in addition to continuously monitoring and assessing that population to reduce the prevalence of this disease.

Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

  • Wang, Jianhong;Wang, Xiaoxiao;Li, Juntao;Chen, Yiqiang;Yang, Wenjun;Zhang, Liying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.223-230
    • /
    • 2015
  • This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part I : Analytical Study

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.17-26
    • /
    • 2003
  • In this paper, the comparative steady-state operating performance analysis algorithms of the stand-alone single-phase self-excited induction generator (SEIG) is presented on the basis of the two nodal admittance approaches using the per-unit frequency in addition to a new state variable de-fined by the per-unit slip frequency. The main significant features of the proposed operating circuit analysis with the per-unit slip frequency as a state variable are that the fast effective solution could be achieved with the simple mathematical computation effort. The operating performance results in the simulation of the single-phase SEIG evaluated by using the per-unit slip frequency state variable are compared with those obtained by using the per-unit frequency state variable. The comparative operating performance results provide the close agreements between two steady-state analysis performance algorithms based on the electro-mechanical equivalent circuit of the single-phase SEIG. In addition to these, the single-phase static VAR compensator; SVC composed of the thyristor controlled reactor; TCR in parallel with the fixed excitation capacitor; FC and the thyristor switched capacitor; TSC is ap-plied to regulate the generated terminal voltage of the single-phase SEIG loaded by a variable inductive passive load. The fixed gain PI controller is employed to adjust the equivalent variable excitation capacitor capacitance of the single-phase SVC.

Effect of Driver's Cognitive Distraction on Driver's Physiological State and Driving Performance

  • Kim, Jun-Hoe;Lee, Woon-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.371-377
    • /
    • 2012
  • Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.

Muscle Fiber Number and Growth Performance of Pigs from Sows Treated with Ractopamine

  • Hoshi, E.H.;Fonseca, N.A.N.;Pinheiro, J.W.;Bridi, A.M.;Silva, C.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1492-1497
    • /
    • 2005
  • The goal of the trial was to evaluate the effects of ractopamine (20 ppm in the ration) given pregnant sows during three different pregnancy stages (T1: 25 to 50 d; T2: 50 to 80 d; T3: 25 to 80 d of gestation, and T4: control-no ractopamine) on fetal muscle development (through counts of the number of fibers of the semitendinosus muscle), on the growth and carcass characteristics of the progeny. Forty eight weaned piglets (12 per treatment) were assessed for number of muscle fibers, while performance and carcass characteristics were evaluated on a separate 48 animals (12 per treatment) grown to 100 kg. Animals produced by sows treated from 25 to 50 d of pregnancy (T1) resulted in non-significant increase of 6.85% in the number of muscle fibers in the semitendinosus muscle when compared to animals from the control group. Performance results were significantly different (p<0.05), and animals produced by sows from the T1 group gained more weight during the growth I stage (25 to 50 kg) and during the total period (6 to 100 kg) (991 vs. 903 grams, and 844 vs. 772 grams, respectively) when compared to controls. For carcass characteristics, results showed that animals produced by the T1 group of sows were heavier at slaughter (p<0.05) when compared to the controls (T4) (100.17 vs. 93.09 kg). There was a positive correlation between number of muscle fibers and bodyweights, carcass weights, Longissimus dorsi muscle depth and dressing out (0.80, 0.86, 0.67, and 0.50, respectively). Sows treated with ractopamine between 25 to 50 d of pregnancy produced piglets that performed better and had superior carcass characteristics than those produced by untreated sows. The ractopamine used for pregnancy sows (25 to 50 d) can be indicated as a device to increase the progeny performance.

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.