• Title/Summary/Keyword: Performance of heat pump

Search Result 837, Processing Time 0.027 seconds

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on Variation of Refrigerant Charge Amount (냉매 충전량에 따른 CO2용 수냉식 열펌프의 성능 특성에 관한 연구)

  • Son, Chang-Hyo;Yu, Tae-Guen;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.558-566
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of refrigerant charge amount was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which are made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2400 mm length. The experimental results summarize as the followings : As the refrigerant charge ratio of $CO_2$ heat pump system increases, the discharge pressure and compressor ratio increases, but mass flow rate of refrigerant decreases. Also the compressor work increases with the increase of refrigerant charge ratio. However, the heating and cooling capacity of $CO_2$ heat pump decreases as the refrigerant charge ratio increases. The maximum heating COP of $CO_2$ heat pump system presented at 0.25 refrigerant charge ratio. It is possible to confirm the optimum charge ratio of $CO_2$ heat pump system by the viewpoint of heating COP.

Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers (구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성)

  • Park, Youn-Cheol;Kim, Sang-Hyuk;Kim, Ji-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

An Experimental Study on the Performance of a Heat Pump with a Refrigerant Heating Device (냉매가열식 열펌프시스템의 성능특성에 관한 실험적 연구)

  • Kim, Sang-Hyuk;Park, Youn-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.707-713
    • /
    • 2006
  • To improve heating performance of the heat pump in winter season, refrigerant heating device was applied to conventional heat pump. The refrigerant heating device operates at the heating capacity does not enough to the heating load requirement of the conditioning space. When the discharge air temperature of the indoor heat exchanger goes down to below $40^{\circ}C$ which is criterion for comfort of the occupants in the conditioning space, the system also starts. The refrigerant heating system has new concept of auxiliary heating device for heat pump in winter. In this study, the system performance was analyzed through experiments and parametric study was conducted to improve the COP and control strategies.

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 열펌프 시스템의 열성능 해석)

  • Koh, Deuk-Yong;Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.167-172
    • /
    • 2005
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHP) system. The calculation was performed for two design factors. the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model o( water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

  • PDF

Performance Analysis of Heat Pump System for Greenhouse Cooling (온실 냉방을 위한 히트펌프의 성능 분석)

  • 윤용철;서원명;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.120-126
    • /
    • 2001
  • This experiment was carried out to analyse on the cooling and dehumidifying effects of greenhouse by air-to-water heat pump system employing the air as cooling source. following results were obtained ; 1. The coefficients of performance (COP) of heat pump itself and total heat pump system were approximately 2.71~2.88 and 1.99~2.22, respectively. 2. The night-time cooling load of experimental greenhouse was 64.9 MJ/h, and the heat absorbed (cooling load) from heat pump system was 816.3~1,004.6 MJ/day. 3. The dehumidified moisture amount from experimental greenhouse was 7.0~15.0 kg/h. 4. The night time temperature of experimental greenhouse cooled by heat pump system could be maintained 4~6$^{\circ}C$ lower than that of control greenhouse which was almost equal to outside air temperature.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

Heating and Cooling Performance Characteristics of a Water-to-Water Heat Pump with R452B Refrigerant (R452B 냉매 적용 물대물 지열원 히트펌프 유닛의 냉난방 운전 성능 특성)

  • Choi, Youn Sung;Kang, Hee Jeong;Kim, Eun Oh
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2017
  • Refrigerant having high global warming potentials will be phased out due to environmental protection issues. R410A has been widely used in geothermal heat pump. However, it has a little high GWP by 2088 value. One of the recommended substitute for R410A refrigerant is R452B which having a GWP by 698 value. In this paper, the heating and cooling performance of the water-to-water geothermal heat pump unit with R452B was experimentally investigated. The performance of the heat pump adopting R452B was also compared with the system applying R410A. The heating and cooling capacity of R452B heat pump system showed a slightly lower values within 2% comparing with R410A system. However, the R452B system's coefficient of performance was enhanced by 5.2% and 13.7% at heating and cooling mode, respectively.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.