• Title/Summary/Keyword: Performance evolution

Search Result 882, Processing Time 0.03 seconds

Attention Based Collaborative Source-Side DDoS Attack Detection (어텐션 기반 협업형 소스측 분산 서비스 거부 공격 탐지)

  • Hwisoo Kim;Songheon Jeong;Kyungbaek Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.157-165
    • /
    • 2024
  • The evolution of the Distributed Denial of Service Attack(DDoS Attack) method has increased the difficulty in the detection process. One of the solutions to overcome the problems caused by the limitations of the existing victim-side detection method was the source-side detection technique. However, there was a problem of performance degradation due to network traffic irregularities. In order to solve this problem, research has been conducted to detect attacks using a collaborative network between several nodes based on artificial intelligence. Existing methods have shown limitations, especially in nonlinear traffic environments with high Burstness and jitter. To overcome this problem, this paper presents a collaborative source-side DDoS attack detection technique introduced with an attention mechanism. The proposed method aggregates detection results from multiple sources and assigns weights to each region, and through this, it is possible to effectively detect overall attacks and attacks in specific few areas. In particular, it shows a high detection rate with a low false positive of about 6% and a high detection rate of up to 4.3% in a nonlinear traffic dataset, and it can also confirm improvement in attack detection problems in a small number of regions compared to methods that showed limitations in the existing nonlinear traffic environment.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

Understanding policies regarding intangible cultural treasures and directions for improvement to promote the continuing tradition of Pansori (판소리 전승 활성화를 위한 무형문화재 제도의 이해와 개선 방향)

  • Choi, Hye Jin
    • (The) Research of the performance art and culture
    • /
    • no.36
    • /
    • pp.289-312
    • /
    • 2018
  • Pansori has been passed down over several generations and over time have undergone continued change in accordance with the times, as well as the skills and ability of the singer. Policies regarding intangible cultural treasures were established to preserve and promote the continuing tradition of art forms including Pansori and thus must spare no effort in supporting and preserving the genre. As such, for proper implementation of the newly legislated law, it is necessary to review the agents who pass down the tradition of Pansori and whether there are any areas that need to be changed in terms of our perception of culture in general. Pansory in the $21^{st}$ century features both contemporary aspects and mass appeal and have undergone many changes in how it is enjoyed. It is our responsibility therefore, to establish how the art and universality of Pansori should be promoted. From this perspective, this study reviewed the evolution of law on intangible cultural treasures, the current status of intangible cultural treasures being passed down with a focus on national treasures and those of Jeonbuk Province to shed light on issues. Diversification is needed in the number of those who carry this intangible cultural treasure, as well as the number of categories. To that end, a survey index or practical ability index must be taken into account for the application and designation of intangible cultural treasures. The study also noted issues of the categories for designation as intangible cultural treasures and discussed directions for improvement. In the case of Pansori, suggestions for improvement were presented for the designation of skilled artists by school, regular surveys and regular application, increased role of artists for increased mass appeal, survey of regional singers, supervision and monitoring of skilled artists and establishment of a manual for the education on how to pass down the art form. In doing so, efforts should be made to make the passing down of Pansori more active and related education more systematic. Since we are in the early years of the law on intangible cultural treasures being implemented, areas of improvement will continue to be identified. It is however certain that the proper support for the art form to be handed down should be done in a way where law and culture are complementary given that Pansori is not just a Korean tradition, but a tradition of mankind.

An Interpretation of the Korean Fairy-Tale "Borrowed Fortune From Heaven" From the Perspective of Analytical Psychology (한국민담 <하늘에서 빌려온 복>에 대한 분석심리학적 이해)

  • Kihong Baek
    • Sim-seong Yeon-gu
    • /
    • v.38 no.1
    • /
    • pp.112-160
    • /
    • 2023
  • This study examined the Korean folklore "Borrowed Fortune from Heaven" from the perspective of Analytical Psychology, considering it a manifestation of the human psyche, and tried to gain a deeper understanding of what happens in our mind. Through the exploration, the researcher was able to re-identify the ongoing psychological process operating in the depths of our mind, pertaining to the emergence of a new dimension of consciousness. Particularly the researcher was able to gain some insights into how the potential psychic elements for the new consciousness are prepared in the unconscious, how they get integrated into the conscious life, and what is essential for the accomplishment of the process. The tale begins with a poor woodcutter who, in order to escape from poverty, starts gathering twice as much firewood. However, the newly acquired amount disappears overnight, so the woodcutter gets perplexed and curious about where it goes and who is taking it. He seeks to find out the truth, which leads him to an unexpected journey to Heaven. There he learns the truth concerning his very tiny amount of fortune, and discovers another big fortune for an unborn person. By pleading with the ruler of Heaven, the woodcutter borrows that grand fortune, on the condition that he must return it to the owner when the time comes. After that, the woodcutter's life undergoes a series of changes, in which he finally becomes a wealthy farmer, but gradually is reminded more and more that the destined time is approaching. In the end, the fortune is completely transferred to the original owner, resulting in a dramatic twist and the creation of a new life circumstances. The overall plot can be understood as a reflection of the psychological process aiming at the evolution of consciousness through renewal. In this context, the woodcutter can be considered a psychic element that undergoes a continuous transformation in preparation for participating in the upcoming new consciousness. In other words, the changes brought about by this figure can be interpreted as a gradual and increasingly detailed foreshadowing of what the forthcoming new consciousness would be like. Interestingly, as the destined time approaches, the protagonist's anguish in conflict reaches its climax, despite his good performance in his role until then. This effectively portrays the difficulty of achieving a new dimension of consciousness, which requires moving past the last step. All the events in the story ultimately converge at this point. After all, the resolution occurs when the protagonist lets go of everything he has and follows the will of Heaven. This implies what is essential for the renewal of consciousness. Only by completely complying with the entire mind, the potential constituents of the new consciousness that should play important roles in a renewal and evolution of consciousness through experiencing, can participate in the ultimate outcome. As long as they remain trapped in any intermediate stage, the totality of the psyche would develop another detour aiming at the final destination, which means the beginning of another period of suffering carrying a purposeful meaning. The tale suggests that this truth will be applied everywhere that renewal of consciousness is directed, whether for an individual or a society.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.

S-MADP : Service based Development Process for Mobile Applications of Medium-Large Scale Project (S-MADP : 중대형 프로젝트의 모바일 애플리케이션을 위한 서비스 기반 개발 프로세스)

  • Kang, Tae Deok;Kim, Kyung Baek;Cheng, Ki Ju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.555-564
    • /
    • 2013
  • Innovative evolution in mobile devices along with recent spread of Tablet PCs and Smart Phones makes a new change not only in individual life but also in enterprise applications. Especially, in the case of medium-large mobile applications for large enterprises which generally takes more than 3 months of development periods, importance and complexity increase significantly. Generally Agile-methodology is used for a development process for the medium-large scale mobile applications, but some issues arise such as high dependency on skilled developers and lack of detail development directives. In this paper, S-MADP (Smart Mobile Application Development Process) is proposed to mitigate these issues. S-MADP is a service oriented development process extending a object-oriented development process, for medium-large scale mobile applications. S-MADP provides detail development directives for each activities during the entire process for defining services as server-based or client-based and providing the way of reuse of services. Also, in order to support various user interfaces, S-MADP provides detail UI development directives. To evaluate the performance of S-MADP, three mobile application development projects were conducted and the results were analyzed. The projects are 'TBS(TB Mobile Service) 3.0' in TB company, mobile app-store in TS company, and mobile groupware in TG group. As a result of the projects, S-MADP accounts for more detailed design information about 'Minimizing the use of resources', 'Service-based designing' and 'User interface optimized for mobile devices' which are needed to be largely considered for mobile application development environment when we compare with existing Agile-methodology. Therefore, it improves the usability, maintainability, efficiency of developed mobile applications. Through field tests, it is observed that S-MADP outperforms about 25% than a Agile-methodology in the aspect of the required man-month for developing a medium-large mobile application.

Predicting link of R&D network to stimulate collaboration among education, industry, and research (산학연 협업 활성화를 위한 R&D 네트워크 연결 예측 연구)

  • Park, Mi-yeon;Lee, Sangheon;Jin, Guocheng;Shen, Hongme;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.37-52
    • /
    • 2015
  • The recent global trends display expansion and growing solidity in both cooperative collaboration between industry, education, and research and R&D network systems. A greater support for the network and cooperative research sector would open greater possibilities for the evolution of new scholar and industrial fields and the development of new theories evoked from synergized educational research. Similarly, the national need for a strategy that can most efficiently and effectively support R&D network that are established through the government's R&D project research is on the rise. Despite the growing urgency, due to the habitual dependency on simple individual personal information data regarding R&D industry participants and generalized statistical data references, the policies concerning network system are disappointing and inadequate. Accordingly, analyses of the relationships involved for each subject who is participating in the R&D industry was conducted and on the foundation of an educational-industrial-research network system, possible changes within and of the network that may arise were predicted. To predict the R&D network transitions, Common Neighbor and Jaccard's Coefficient models were designated as the basic foundational models, upon which a new prediction model was proposed to address the limitations of the two aforementioned former models and to increase the accuracy of Link Prediction, with which a comparative analysis was made between the two models. Through the effective predictions regarding R&D network changes and transitions, such study result serves as a stepping-stone for an establishment of a prospective strategy that supports a desirable educational-industrial-research network and proposes a measure to promote the national policy to one that can effectively and efficiently sponsor integrated R&D industries. Though both weighted applications of Common Neighbor and Jaccard's Coefficient models provided positive outcomes, improved accuracy was comparatively more prevalent in the weighted Common Neighbor. An un-weighted Common Neighbor model predicted 650 out of 4,136 whereas a weighted Common Neighbor model predicted 50 more results at a total of 700 predictions. While the Jaccard's model demonstrated slight performance improvements in numeric terms, the differences were found to be insignificant.

Is Religion Possible in the Age of Artificial Intelligence? - From the View of Kantian and Blochian Philosophy of Religion - (인공지능시대에도 종교는 가능한가? - 칸트와 블로흐의 종교철학적 관점에서 -)

  • Kim, Jin
    • Journal of Korean Philosophical Society
    • /
    • v.147
    • /
    • pp.117-146
    • /
    • 2018
  • This paper discusses, whether religion is possible even in the age of artificial intelligence, and whether humans alone are the subject of religious faith or ultra intelligent machines with human minds can be also subjects of faith. In order for ultra intelligent machines to be subjects of faith in the same conditions as humans, they must be able to have unique characteristics such as emotion, will, and self-consciousness. With the advent of ultra intelligent machines with the same level of cognitive and emotional abilities as human beings, the religious actions of artificial intelligence will be inevitable. The ultra intelligent machines after 'singularity' will go beyond the subject of religious belief and reign as God who can rule humans, nature and the world. This is also the common view of Morabeck, Kurzweil and Harari. Leonhart also reminds us that technological advances should make us used to the fact that we are now 'gods'. But we fear we may face distopia despite the general affluence of the 'Star Trec' economy. For this reason, even if a man says he has learned the religious truth, one can't help but wonder if it is true. Kant and Bloch are thinkers who critically reflected on our religious ideals and highest concept in different world-view premises. Kant's concept of God as 'idea of pure reason' and 'postulate of practical reason', can seem like a 'god of gap' as Jesse Bering said earlier. Kant recognized the need for religious faith only on a strict basis of moral necessity. The subjects of religious faith should always strive to do the moral good, but such efforts themselves were not enough to reach perfection and so postulated immortality of the soul. But if an ultra intelligent machines that has emerged above a singularity is given a new status in an intellectual explosion, it can reach its morality by blocking evil tendencies and by the infinite evolution of super intelligence. So it will no longer need Kant's 'Postulate for continuous progress towards greater goodness', 'Postulate for divine grace' and 'Postulate for infinite expansion of the kingdom of God on earth.' Artificial intelligence robots would not necessarily consider religious performance in the Kant's meaning, and therefore religion will also have to be abolished. Ernst Bloch transforms Kant's postulate to be Persian dualism. Therefore, in Bloch, even though the ultra intelligent machines is a divine being, one must critically ask whether it is a wicked or a good God. Artificial intelligence experts warn that ultra intellectual machine as Pandora's gift will bring disaster to mankind. In the Kant's Matrix, a ultra intelligent machines, which is the completion of morality and God itself, may fall into a bad god in Bloch's Matrix. Therefore, despite the myth of singularity, we still believe that ultra intelligent machines, whether as God leads us to the completion of one of our only religious beliefs, or as bad god to the collapse of mankind through complete denial of existence.