• Title/Summary/Keyword: Performance evaluation test bed

Search Result 90, Processing Time 0.025 seconds

Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations (이중관형 지중열교환기 구성에 따른 현장 열성능 평가)

  • Lee, Seokjae;Jung, Hyun-seok;Oh, Kwanggeun;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

An Experimental Verification on the Development of an Innovative Diamond Wire Saw Cutting Technology (새로운 다이아몬드 와이어 쏘 절단 기술 개발에 관한 실험적 검증)

  • Park, Jong Hyup;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2018
  • This paper introduces a innovative diamond wire saw cutting technology and its experimental verification that can be utilized for cutting heavy structures. While conventional diamond wire saw cutting technologies such as water cooled cutting method and dry cutting method cause severe environmental problems due to generating massive concrete sludge or dust scattering, the proposed method can eliminate those problems considerably. Through extensive experiments using heavy structure test bed and real bridge pier structure, comprehensive analysis and comparative evaluation about various cutting methods were performed. As a result, the innovative diamond wire saw cutting method could achieve a similar cutting and cooling performance to the water cooled cutting method without generating concrete sludge and it showed an improved cutting and cooling performance to the dry cutting method without dust scattering. Consequently it is confirmed that the suggested cutting technology can be a promising environment-friendly alternative in the field of heavy structure dismantling.

The Study to Suggest a Methods to Evaluate Heating and Cooling Energy Performance based on Daily Life (실생활기반 냉난방에너지 성능평가 방법 제안 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Kim, Yongseong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.3
    • /
    • pp.291-299
    • /
    • 2015
  • With recent surge of attention to heating and air conditioning energy consumption, the need for evaluating performance of heating and air conditioning energy is also on the rise. This research aims to propose daily-life based evaluation method as an alternative to existing one, as well as to apply the method in real life to prove its validity. The results are as following. 1) I studied temperatures preferred by persons indoors and appropriate level of temperature, and the results show that properties of such persons such as age is directly linked with pleasantness of the room, but the issue lies with the fact that such properties are not considered in existing performance evaluation of heating and air conditioning. 2) Daily life based evaluation proposed herein reflects such properties of persons indoors. It controls heating / air conditioning devices installed in the test bed with the same size as a real life room to get quantitative and visual performances in our daily life as well as simple temperature information. 3) To verify validity of daily life based evaluation, I conducted different evaluation sessions with and without a blind and also based on ages of persons indoors. Results based on properties of persons showed difference of 77.6%, leading to effective analysis of energy consumption pattern by heating / air conditioning devices. This research takes significance in that it comes with a new performance evaluation method based on real life, and I gather that further studies are required to develop more multilateral performance evaluation in order to verify and improve technology for reduction of energy consumption.

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

Study on Electromagnetic Testing for Surface-to-Air Missile system and Method for Test Complementation (대공유도무기체계의 전자기 시험 고찰 및 시험 보완 방법)

  • Young-jae Kim;Sang-hoon Koh;Dong-hyun Park;Seok-choo Han;Dae-hyun Lee;Jeong-woo An
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.456-463
    • /
    • 2022
  • The SAM(Surface-to-Air Missile) systems will be operated until disposing of it after production, the necessary test and evaluation should be performed during the development stage to ensure the operational performance after deployment. As development of technologies related to the electromagnetic wave field of missile system is required, so the verification of the electromagnetic environment has become more important. Therefore it is necessary to carefully review whether there are any weaknesses through the analysis of the SAM system when establishing the test and evaluation procedure. This paper describes the general electromagnetic test procedure for SAM system and discusses the matters that need to be supplemented. Also, methods for supplementation and review results were written.

DEVELOPMENT OF A GRAIN CIRCULATING TYPE NATURAL AIR IN-BIN DRYER

  • Yun, H.S.;Chung, H.;Cho, Y.G.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.405-412
    • /
    • 2000
  • A natural air in-bin grain dryer with a grain circulator was developed for on farm use. Natural air drying test for rough rice was carried out to evaluate drying rate, uniformity of moisture content distribution in grain bed and energy consumption. It took 10 days to dry 8 ton of paddy rice from 21.9%(w.b) to 16.7%(w.b) moisture contents using the prototype dryer. The average drying rate was 0.52%/day. The uniformity of moisture content after drying was superior to the conventional natural air dryer where is grains were not circulated during drying periods. The dryer performance evaluation index was 738.3KJ/(kg.water), which was more effective than that of grain circulation t)pe hot air dryer(3,500-5,000 KJ/kg.water).

  • PDF

A Study on Workload Smoothness Considering Work Relatedness In the U-Line (U라인에서의 작업관련성을 고려한 작업부하 평활화에 관한 연구)

  • 김우열;김용주;김동묵
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.116-124
    • /
    • 2002
  • In just-in-time production systems, U-shaped production lines rather than traditional straight lines are often adopted since they have some advantages. The advantages of U-lines over straight lines are that the workstations required can be reduced and the necessary number of workers can be easily adjusted when the demand rates are changed. In this paper, we present a new genetic algorithm(GA) to minimize the number of workstations primarily and improve the work relatedness secondarily in the U-line production systems. Also, a new heuristic method is presented according to the work related factors and characteristics of U-line balancing. Some major aspects of the proposed GA are discussed, with emphasis on representation, decoding and evaluation function. Extensive experiments are carried out on well-known test-bed problems in the literature to verify the performance of our algorithm . The computational results show that our algorithm is a promising alternative to existing heuristics.

Evaluation of Granular Activated Carbon Process Focusing on Molar mass and size distribution of DOM (DOM의 분자량과 크기분포에 따른 입상활성탄 공정의 평가)

  • Chae, Seon H.;Lee, Kyung H .
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The primary objective of this study was to evaluate the variation of the molecular size distribution by granular activated carbon (GAC) adsorption. GAC adsorption was assessed by using the rapid small-scale column test (RSSCT) and high-performance size-exclusion chromatography (HPSEC) was used to analyze the molecular size distribution (MSD) in the effluent of GAC column. RSSCT study suggested that GAC adsorption exhibited excellent interrelationship between dissolved organic carbon (DOC) breakthrough and MSD as function of bed volumes passed. After GAC treatment, the nonadsorbable fraction which was about 25percents of influent DOC corresponded to the hydrophilic (HPI) natural organic carbon (NOM) of NOM fractions and was composed entirely of <300 molecular weight (MW) in the HPSEC at the initial stage of the RSSCT operation. The dominant MW fraction in the source water was 1,000~5,000daltons. At the bed volumes 2,500, MW <500 of GAC treated water was risen rather than it of source water. After the bed volumes 7,300 of operation, the MW 1,000~3,000 fraction was closed to about 80percents of DOC found in the GAC influent. The Number-average molecular weight (Mn) value determined using HPSEC for the effluent of GAC column was gently increased as DOC breakthrough progress. The quotient p(Mw/Mn) can be used to estimate the degree of polydispersity was shown greatest value for the GAC effluent at the initial stage of the RSSCT operation.

Performance evaluation of nitrate removal in high TDS wet scrubber wastewater by ion exchange resin with dissolved air flotation (DAF) process

  • Kim, Bongchul;Yeo, Inseol;Park, Chan-gyu
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The regulations of the International Maritime Organization (IMO) have been steadily strengthened in ship emissions. Accordingly, there is a growing need for development of related technologies for the removal of contaminants that may occur during the treatment of SOx and NOx using a wet scrubber. However, this system also leads to wastewater production when the exhaust gas is scrubbed. In this research, we evaluated the performance of an ion selective resin process in accordance with scrubber wastewater discharge regulations, specifically nitrate discharge, by the IMO. Accelerated real and synthetic wastewater of wet scrubbers, contained high amounts of TDS with high nitrate, is used as feed water in lab scale systems. Furthermore, a pilot scale dissolved air flotation (DAF) using microbubble generator with ion exchange resin process was combined and developed in order to apply for the treatment of wet scrubber wastewater. The results of the present study revealed that operating conditions, such as resin property, bed volume (BV), and inlet wastewater flow rate, significantly affect the removal performance. Finally, through a pilot test, DAF with ion exchange resin process showed a noticeable improvement of the nitrate removal rate compared to the single DAF process.