본 논문에서는 다수의 특징과 이진 분류 트리를 이용하여 장면 전환점(shot change)을 검출하는 향상된 방식을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 본 논문에서는 단일 특징보다는 상호 보완 관계를 갖는 다수의 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 그리고 장면 전환점의 분류를 위해서는 이진 분류 트리(binary classification tree)를 이용한다. 이 분류 결과에 따라 장면 전환점 검출에 사용될 중요한 특징들을 선별하고, 각 특징들의 최적 임계값을 구한다. 또한, 분류 성능을 확인하기 위해 교차검증(cross-validation)과 드롭 케이스(drop-case)를 수행하였다. 실험 결과, 제안된 기법이 단일 특징들만을 사용한 기존의 방법들 보다 El(Evaluated Index, 성능평가지수)에서 평균 2%의 성능이 향상됨을 알 수 있었다.
동영상 압축 표준안 H.264/AVC에서 다중 참조 픽처를 이용한 움직임 추정은 압축 효율을 향상 시켰으나 그 효율은 참조 픽처의 수가 아닌 영상 내용에 의존적이다. 그래서 이 움직임 추정은 영상에 따라 많은 무의미한 계산을 포함하고 있다. 본 논문은 다중 참조 픽처를 이용한 움직임 추정의 무의미한 계산을 제거하는 고속 움직임 추정 알고리즘을 제안한다. 제안된 알고리즘은 영상 복잡도와 예측 움직임 벡터를 이용하여 다중 참조 픽처가 유효한 블록과 무효한 블록을 구분하고 무효한 블록에 단일 참조 픽처를 적용하여 무의미한 계산을 제거한다. 제안된 알고리즘의 성능 평가를 위해 참조 소프트웨어 JM 9.5에서 화질, 비트율, 움직임 추정 시간이 기존 알고리즘과 비교되었다. 실험 결과는 제안된 알고리즘이 평균 움직임 추정 시간을 약 38.67%로 크게 감소시키며 화질과 비트량을 각각 기존 알고리즘 정도인 -0.02dB와 -0.77% 정도로 유지시킬 수 있는 것을 보여주고 있다.
Purpose: The purpose of this study is to provide basic data for the development of the most appropriate and effective educational materials for patients and their caregivers through the educational experiences of patient safety officer. Methods: This study is a qualitative analysis that involves using the focus group interview to understand the patient safety education experience of the patient safety officer. Results: The patient safety education experience of the patient safety officer is divided into four topics: (1) patient safety education content (2) patient safety education method (3) patient safety education status (4) activation and improvement of patient safety education. Additionally, the study incorporated twelve subtopics: (a) falls (b) speak up (c) patient safety campaign (d) patient safety rounding and a one on one training (e) education through medical staff (f) education using broadcast, video, post, among others (g) a lot of education in patient (h) patients not interested in patient safety education (i) patient safety education is less effective (j) human and medical expenses support (k) provision of standardized educational materials (l) patient safety culture for patient participation. Conclusions: This study indicate that education for patients and the caregivers should be inclusive and protective of stakeholders from the risks involved in patient safety events. The experience of patient safety officer is necessary for patient safety education for both patients and the caregivers since it is the source of basic data for the future development of patient safety education.
챗봇은 음성, 이미지, 비디오 또는 텍스트와 같은 다양한 매채를 이용하여 대화가 가능한 대화형 어시스턴트이자 인공지능을 기반으로 사용자의 질문에 답하거나 문제를 해결할 수 있는 사용자 친화적 프로그램이다. 하지만 현재 챗봇은 사용자가 요청한 작업을 정확하게 수행하는 기술적측면에 초점이 맞추어져 있으며, 개인화된 대화로 사용자와 챗봇간의 관계성 구축에는 제한적이어서 일부 사례에도 불구하고 소셜챗봇이 되기에는 미흡한 상태이다. 만약 인간의 사회성을 나타내는 특징 중 하나인 관계성을 챗봇이 인식하여 알맞게 대화를 하여 문제를 해결할 수 있다면, 개인화된 대화를 할 수 있을 뿐만 아니라 인간과 유사한 대화를 할 수 있을 것이다. 본 연구의 목적은 사용자가 입력한 내용을 기반으로 챗봇과 사용자 간의 관계성을 추론하고 대화 상황에 맞게 대화 상대가 적절한 대화를 수행 할 수 있는 텍스트 분석 방법을 제안하는 것이다. 본 연구의 실험 및 평가를 하기 위하여 실제 SNS대화 내용을 사용하였다. 분석결과 개인정보 보호를 위해 사용자의 개인 프로필 정보가 제외된 방법에서도 우수한 결과를 나타내어 소셜 챗봇에 적합한 방법으로 검증되었다.
contents and big data웹은 사람들의 일상생활에 있어 가장 밀접한 기술 중 하나로 오늘날 대부분의 사람들은 웹을 통해 데이터를 공유하고 있다. 단순 메신저, 뉴스, 영상뿐만 아니라 다양한 데이터가 현재 웹을 통하여 전파되고 있는 셈이다. 또한 웹 어셈블리 기술이 등장하면서 기존 네이티브 환경에서 구동되던 프로그램들이 웹의 영역에 진입하기 시작하면서 웹이 공유하는 데이터는 이제 VR/AR 콘텐츠, 빅데이터 등 그 범주가 점차 넓어지고, 크기가 거대해지고 있다. 따라서 본 논문에서는 브라우저에 종속적이지 않고 독립적으로 동작이 가능한 서비스워커와 웹 브라우저 내에 데이터를 효과적으로 저장할 수 있는 캐시 API를 활용하여 웹 서비스를 사용하는 사용자들에게 웹 콘텐츠를 효과적으로 전달할 수 있는 방법을 제시하였다.
International Journal of Computer Science & Network Security
/
제22권11호
/
pp.331-337
/
2022
Smart learning is augmented with digital, context-aware, and adaptable technologies to encourage students to learn better and faster. To ensure that digital learning is successful and that implementation is efficient, it is critical that the dimensions of digital learning are arranged correctly and that interactions between the various elements are merged in an efficient and optimal manner. This paper builds and discusses a basic framework for smart learning in the digital age, aimed to improve students' abilities and performance in learning. The proposed framework consists of five dimensions: Teacher, Technology, Learner, Digital content, and Evaluation. The Teacher and Learner dimensions operate on two levels: (a) an abstract level to fit in knowledge and skills or interpersonal characteristics and (b) a concrete level in the form of digital devices used by teachers and learners. Moreover, this paper proposes asynchronous online course delivery model. An Arabic smart learning platform has been developed, based on these smart learning core dimensions and the asynchronous online course delivery model, because despite the official status of this language in many countries, there is a lack of Arabic platforms to teach Arabic. Moreover, many non-native Arabic speakers around the world have expressed an interest in learning it. The Arabic digital platform consists of over 70 lessons classified into three competence levels: beginner, intermediate, and advanced, delivered by Arabic experts and Arabic linguists from various Arab countries. The five dimensions are described for the Arabic platform in this paper. Learner dimension is the Arabic and non-Arabic speakers, Teacher dimension is Arabic experts and Arabic linguistics, Technology dimension consists of technology for Arabic platform that includes web design, cloud computing, big data, etc. The digital contents dimension consists of web-based video, records, etc. The evaluation dimension consists of Teachers rating, comments, and surveys.
디지털 홀로그램(digital hologram, DH)은 2차원 데이터에 3차원의 정보를 포함하는 초고부가가치의 영상 콘텐츠이다. 따라서 이 콘텐츠의 유통을 위해서는 그 지적재산권이 반드시 보호되어야 한다. 본 논문에서는 이를 위해서 최초로 딥 뉴럴 네트워크를 이용한 DH의 워터마킹 방법을 제안한다. 이 방법은 워터마크(watermark, WM)가 의 비가시성, 공격에 대한 강인성, WM 추출 시 호스트 정보를 사용하지 않는 blind 워터마킹 방법이다. 제안하는 네트워크는 호스트와 워터마크 각각의 전처리, WM 삽입, WM 추출의 네 부-네트워크로 구성된다. 이 네트워크는 고주파 성분이 강한 DH의 특성을 감안하여 호스트 데이터를 축소하지 않고 WM 데이터를 확장하여 호스트 데이터와 정합함으로써 WM를 삽입한다. 또한 이 네트워크의 학습에 있어서 DH의 데이터 분포특성에 따른 성능의 차이를 확인하고, 모든 종류의 DH에서 최고의 성능을 갖는 학습 데이터 세트를 선정하는 방법을 제시한다. 제안한 방법을 다양한 종류와 강도의 공격에 대해 실험을 수행하여 그 성능을 보인다. 또한 이 방법이 호스트 DH의 해상도와 WM 데이터에 독립적으로 동작하여 높은 실용성을 갖는다는 것을 보인다.
디지털 영상 콘텐츠는 가장 정보 함축적이며 고부가가치의 콘텐츠이다. 따라서 이 콘텐츠들의 지적재산권을 보호할 필요가 있으며, 본 논문도 이것을 목적으로 한 디지털 워터마킹 방법을 제안한다. 제안하는 방법은 디지털 영상에 대한 2차원 이산웨이블릿변환(2-Dimensional Discrete Wavelet Transform, 2D-DWT)의 주파수 특성을 이용하며, 영상의 국부적 또는 특정 데이터를 사용하지 않고 전역적 데이터에 디지털 워터마크를 삽입하는 방법을 사용한다. 디지털 워터마크를 삽입하는 방법은 간단한 양자화 인덱스 변조(Quantization Index Modulation, QIM) 방법을 사용하며, 워터마크 데이터를 다중으로 삽입하는 다중 워터마킹 방식을 사용한다. 워터마크를 추출할 때 다중 워터마크를 모두 추출하여 간단한 통계적 방법으로 최종 워터마크 데이터를 결정한다. 이 방법은 워터마크 삽입과정에서의 파라미터들을 실험적으로 결정하는 실험적 방법이다. 제안하는 방법은 다양한 공격에 대해 다양한 영상을 대상으로 실험을 수행하며, 기존의 대표적인 방법들과 그 성능을 비교하여 제안한 방법의 우수성을 보인다.
H.264|AVC 영상 압축부호화 국제 표준은 영상의 효율적인 압축을 위하여 화면 내 프레임뿐만 아니라 화면 간 프레임에서도 다양한 블록 크기로 화면 내 예측을 수행할 수 있도록 설계되어 있다. 그러나 이는 영상 부호화 처리 시간의 급격한 증가를 초래하여 부호화기의 실시간 응용에 걸림돌이 될 수 있다. 본 논문에서는 먼저 화면 내 예측 부호화 수행 여부에 대한 조기 결정 방법과 화면 내 예측 부호화 수행 시 부호화하고자 하는 블록의 영상 내용 특성과 QP값의 변화에 따른 부호화 대상 주변 블록 모드 정보를 이용하여 만들어진 조건부 확률을 이용하여 화면 내 예측 부호화를 고속화하는 방법을 제안한다 제안된 방법은 기본적으로 화면 간 프레임 부호화에 있어서 화면 내 예측 수행 여부에 대한 조건을 결정하고, 화면 내 예측이 사용될 경우 부호화하고자 하는 블록의 내용 특성과 부호화된 주변 블록의 결정 모드를 고려하여 화면 내 예측을 고속화하는 것이다. 본 논문의 실험은 H.264|AVC의 참조 소프트웨어인 JM 11.0을 사용하여 검증하였으며, 제안된 방법을 사용하였을 경우 무시할 수 있을 정도의 PSNR 감소와 비트율 증가를 가져 왔으며, 전체 부호화 시간은 최대 41.63%가 단축되는 효과를 얻을 수 있었다.
농업 관련 방송 콘텐츠에서 과일에 대한 자동적인 정보 제공을 위해서 대상 과일의 인스턴스 영상 분할이 요구된다. 또한, 해당 과일에 대한 3차원 자세에 대한 정보 제공도 의미있게 사용될 수 있다. 본 논문에서는 영상 콘텐츠에서 토마토에 대한 정보를 제공하는 연구를 다룬다. 인스턴스 영상 분할 기법을 학습하기 위해서는 다량의 데이터가 필요하지만 충분한 토마토 학습데이터를 얻기는 힘들다. 따라서 적은 양의 실사 영상을 바탕으로 데이터 증대기법을 통해 학습 데이터를 생성하였다. 실사 영상만을 통한 학습 결과 정확도에 비해서, 전경과 배경을 분리해서 만들어진 합성 영상을 통해 학습한 결과, 기존 대비 성능이 향상되는 것을 확인하였다. 영상 전처리 기법들을 활용해서 만들어진 영상을 사용한 데이터 증대 영상의 학습 결과, 전경과 배경을 분리한 합성 영상보다 높은 성능을 얻는 것을 확인하였다. 객체 검출 후 자세 추정을 하기 위해 RGB-D 카메라를 이용하여 포인트 클라우드를 획득하였고 최소제곱법을 이용한 실린더 피팅을 진행하였고, 실린더의 축 방향을 통해 토마토 자세를 추정하였다. 우리는 다양한 실험을 통해서 대상 객체에 대한 검출, 인스턴스 영상 분할, 실린더 피팅의 결과가 의미있게 나타난다는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.