• Title/Summary/Keyword: Performance Simulation

Search Result 20,419, Processing Time 0.047 seconds

Analysis of Integrated Navigation Performance for Sensor Selection of Unmanned Underwater Vehicle (UUV) (무인잠수정 센서 선정을 위한 복합항법 성능 분석)

  • Yoo, Tae-Suk;Kim, Moon Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.566-573
    • /
    • 2014
  • This paper presents the results of an integrated navigation performance analysis for selecting the sensor of an unmanned underwater vehicle (UUV) using Monte Carlo numerical simulation. An inertial measurement unit (IMU) and Doppler velocity log (DVL) are considered to build the integrated navigation system. The position error and price of the sensor are selected as performance indices to evaluate the volunteer integrated navigation systems. Monte-Carlo simulation is introduced to analyze the circular error probability (CEP) and its variance. Simulation results provide the proper sensor combination for integrated navigation in relation to the performance and price.

Simulation of the Characteristics of High-Performance Absorption Cycles (고성능 흡수냉동 사이클의 특성 시뮬레이션)

  • 윤정인;오후규;이용화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.231-239
    • /
    • 1995
  • This paper describes a computer simulation of the triple effect, water-lithium bromide absorption cooling cycles. The performance of the absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature, the working solution concentrations, the ratio of the amount of the weak solution to the high, middle and low temperature generators, and the temperature difference of each solution heat exchanger. The efficiency of different cycles has been studied and the simulation results show that higher coefficient of performance could be obtained for the parallel cycle of constant solution distribution rate. As a result of this analysis, the optimum designs and operating conditions were determined based on the operating conditions and coefficient of performance.

A Performance Simulation for Spark Ignition Wankel Rotary Engine (불꽃점화 반켈 로터리 기관의 성능 시뮬레이션)

  • 채재우;이상만;전영남;김규정;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF

A Study on the Performance Analysis of Automotive Air Conditioning System (자동차용 에어컨 시스템의 성능해석에 관한 연구)

  • 이대웅;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.

Operation Simulation of a Microturbine Based on Test Data (시험 데이터를 지반으로 한 마이크로터빈 운전 시뮬레이션)

  • Lee, Jong-Joon;Yoon, Jae-Eun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.22-28
    • /
    • 2006
  • Operation of a microturbine was simulated on the basis of component characteristic parameters obtained from performance test. Characteristic parameters, such as compressor and turbine efficiencies, recuperator effectiveness as well as turbine inlet temperature, were obtained for a wide operation range. Component characteristics including performance maps and characteristic curves were generated using measured data. Based on the component characteristics, a simulation program was constructed and operation of the microturbine was simulated, and the simulated results were compared with the measured data to verify the program. Also, influence of variation in the power control scheme on the operating characteristic and performance of the engine was simulated. The simulation program can be used for predicting operation of both healthy and degraded engine conditions.

Design and simulation of high performance computer architecture using holographic data storage system for database and multimedia workloads

  • Na, Jong-Whoa;Ryu, Dae-Hyun;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.169-173
    • /
    • 2003
  • The performance of modern mainframe computers keeps increasing due to the advances in the semiconductor technology. However, the quest for the faster computer has never been satisfied. To overcome the discrepancy in the supply and demand, we studied a high performance computer architecture utilizing a three-dimensional Holographic Data Storage Systems (HDSS) as a secondary storage system. The HDSS can achieve a high storage density by utilizing the third dimension. Furthermore, the HDSS can exploit the parallelism by processing the two-dimensional data in a single step. To compare the performance of the HDSS with the conventional hard disk based storage system, we modeled the HDSS using the DiskSim simulation engine and performed the simulation study. Results showed that the HDSS can improve the access time by 1.7 times.

Performance Simulation of a Gasoline Engine Using Multi-Length-Scale Production Rate Model (다중 길이척도 난류운동에너지 생성율 모형을 이용한 가솔린 기관의 성능 시뮬레이션)

  • 이홍국;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.1-14
    • /
    • 1999
  • In the present study, the flame factor which primarily influence the simulation accuracy of the combustion process in a gasoline engine was modeled as a nonlinear function of turbulent intensity to laminar flame speed ratio. Multi-length-scale production rate model for turbulent kinetic energy equation was introduced to consider the different length scales of the swirling and tumbling motions in cylinder on the production rte of turbulent kinetic energy. By7 introducing the multi-length-scale production rate model for the turbulent kinetic energy equation, the predictions of turbulent burning velocity , cylinder pressure, mass burning rate and engine performance of a gasoline engine can much be improved.

  • PDF

Design Variable Analysis of Space Optical Tracking System Using Modeling and Simulation (모델링 및 시뮬레이션을 활용한 우주 광학 추적 시스템 설계 변수 분석)

  • Chul Hyun;Jae Deok Jang;Hojin Lee;Hyun Seung Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.76-84
    • /
    • 2024
  • This study investigates the design of an optical observation system for continuously tracking unknown space object targets within the telescope's field of view at a short cycle rate of several to tens of frames per second. Through modeling and integrated simulation by design variables, we aim to identify combinations that satisfy the performance effectiveness scale. The study demonstrates the effectiveness of a model-based simulation analysis approach in rapidly identifying design parameters that meet specific performance requirements. By leveraging numerical models tailored to the desired performance analysis level, the approach provides a robust foundation for decision-making, eliminating reliance on empirical methods or vague estimations.

Simulation of a Laser Tomography Adaptive Optics with Rayleigh Laser Guide Stars for the Satellite Imaging System

  • Ahn, Kyohoon;Lee, Sung-Hun;Park, In-Kyu;Yang, Hwan-Seok
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.101-113
    • /
    • 2021
  • Adaptive optics (AO) systems are becoming more complex to improve their optical performance and enlarge their field of view, so it is a hard and time consuming process to set up and optimize the components of AO systems with actual implementation. However, simulations allow AO scientists and engineers to experiment with different optical layouts and components without needing to obtain and prepare them physically. In this paper, we introduce a new AO simulation named the Korea Adaptive Optics Simulation (KAOS), independently developed by LIG Nex1. We verified the performance of KAOS by comparing with other AO simulation tools. In the comparison simulation, we confirmed the results from KAOS and other AO simulation tools were very similar. Also, we proposed a laser tomography AO system with five Rayleigh laser guide stars (LGSs) optimized by using KAOS to overcome the disadvantages of the AO system with a single sodium LGS for the satellite imaging system. We verified the performance of the proposed AO system using KAOS, and the simulation result showed averaged Strehl ratio of 0.37.

Configuration methodology and performance evaluation of distributed control systems (분산제어 시스템의 구성 방법 및 성능 평가)

  • 김평수;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.616-619
    • /
    • 1996
  • This paper presents the configuration methodology of Distributed Control System(DCS)s for process plant and their performance evaluation. Performance evaluation is specified both in terms of operational and installation aspects of system. In order to evaluate performance criteria of operational aspect, a simulation method is proposed. Modeling of system components including process computer, database, process controllers and LANs, etc, is implemented for simulation. Based on these characteristics, different system configurations are evaluated and compared through results about evaluation criteria in order to select the best DCS for particular process. The results, in abbreviated form, of the performance evaluation of DCS controlling a CAL(Continuous Annealing Line) plant of iron process are presented.

  • PDF