Mengran Xu;Arsalan Mahmoodzadeh;Abdelkader Mabrouk;Hawkar Hashim Ibrahim;Yasser Alashker;Adil Hussein Mohammed
Geomechanics and Engineering
/
v.39
no.1
/
pp.27-41
/
2024
Accurately estimating the performance of tunnel boring machines (TBMs) is crucial for mitigating the substantial financial risks and complexities associated with tunnel construction. Machine learning (ML) techniques have emerged as powerful tools for predicting non-linear time series data. In this research, six advanced meta-heuristic optimization algorithms based on long short-term memory (LSTM) networks were developed to predict TBM penetration rate (TBM-PR). The study utilized 1125 datasets, partitioned into 20% for testing, 70% for training, and 10% for validation, incorporating six key input parameters influencing TBM-PR. The performances of these LSTM-based models were rigorously compared using a suite of statistical evaluation metrics. The results underscored the profound impact of optimization algorithms on prediction accuracy. Among the models tested, the LSTM optimized by the particle swarm optimization (PSO) algorithm emerged as the most robust predictor of TBM-PR. Sensitivity analysis further revealed that the orientation of discontinuities, specifically the alpha angle (α), exerted the greatest influence on the model's predictions. This research is significant in that it addresses critical concerns of TBM manufacturers and operators, offering a reliable predictive tool adaptable to varying geological conditions.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.11
/
pp.265-272
/
2020
In the research of brain computer interface (BCI) technology, one of the big problems encountered is how to deal with some people as called the BCI-illiteracy group who could not control the BCI system. To approach this problem efficiently, we investigated a kind of spectral EEG characteristics in the prior resting state in association with BCI performance in the following BCI tasks. First, spectral powers of EEG signals in the resting state with both eyes-open and eyes-closed conditions were respectively extracted. Second, a convolution neural network (CNN) based binary classifier discriminated the binary motor imagery intention in the BCI task. Both the linear correlation and binary prediction methods confirmed that the spectral EEG characteristics in the prior resting state were highly related to the BCI performance in the following BCI task. Linear regression analysis demonstrated that the relative ratio of the 13 Hz below and above the spectral power in the resting state with only eyes-open, not eyes-closed condition, were significantly correlated with the quantified metrics of the BCI performance (r=0.544). A binary classifier based on the linear regression with L1 regularization method was able to discriminate the high-performance group and low-performance group in the following BCI task by using the spectral-based EEG features in the precedent resting state (AUC=0.817). These results strongly support that the spectral EEG characteristics in the frontal regions during the resting state with eyes-open condition should be used as a good predictor of the following BCI task performance.
The purpose of this study is to investigate the effect of person-job fit on job performance. In the process, the moderating effect of the meaning of work and the mediating effect of work engagement was investigated. For this purpose, survey data were collected from 304 employees working at the company organization and analyzed using correlation and regression analysis. The summary of the study is as follows. First, there is a significant correlation between realistic person-job fit and perceived person-job fit. Second, perceived person-job fit is a significant predictor of job performance. Third, there is a mediating effect of work engagement in the relationship between person-job fit and job performance. Fourth, there is a moderating effect of the meaning of work in the relationship between person-job fit and work engagement. This study demonstrates the correlation of realistic and perceived person-job fit, which has not been studied in Korea before. It was found that person-job fit influences job performance through mediating emotional variables such as work engagement. From the point of view of organization managers, there is a need to provide a work environment that is appropriate for the characteristics of the employees and to manage how employees perceive person-job fit. In particular, it is necessary to support employees to recognize that their work promotes their growth and contributes to the public good. Finally, the limitations of the study and future research tasks were proposed.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.1
/
pp.9-26
/
2005
In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.
Greenhouse industry has been growing in many countries due to both the advantage of stable year-round crop production and increased demand for fresh vegetables. In greenhouse cultivation, $CO_2$ concentration plays an essential role in the photosynthesis process of crops. Continuous and accurate monitoring of $CO_2$ level in the greenhouse would improve profitability and reduce environmental impact, through optimum control of greenhouse $CO_2$ enrichment and efficient crop production, as compared with the conventional management practices without monitoring and control of $CO_2$ level. In this study, a mathematical model was developed to estimate the $CO_2$ emission from soil as affected by environmental factors in greenhouses. Among various model types evaluated, a linear regression model provided the best coefficient of determination. Selected predictor variables were solar radiation and relative humidity and exponential transformation of both. As a response variable in the model, the difference between $CO_2$ concentrations at the soil surface and 5-cm depth showed are latively strong relationship with the predictor variables. Segmented regression analysis showed that better models were obtained when the entire daily dataset was divided into segments of shorter time ranges, and best models were obtained for segmented data where more variability in solar radiation and humidity were present (i.e., after sun-rise, before sun-set) than other segments. To consider time delay in the response of $CO_2$ concentration, concept of time lag was implemented in the regression analysis. As a result, there was an improvement in the performance of the models as the coefficients of determination were 0.93 and 0.87 with segmented time frames for sun-rise and sun-set periods, respectively. Validation tests of the models to predict $CO_2$ emission from soil showed that the developed empirical model would be applicable to real-time monitoring and diagnosis of significant factors for $CO_2$ enrichment in a soil-based greenhouse.
Previous studies have examined the relationship between domain satisfaction and life satisfaction. However, a comprehensive investigation of satisfaction with multiple domains and their relative contributions to life satisfaction and hedonic balance are missing in the literature. And most studies were conducted in English speaking countries and only a few cross-cultural studies have been conducted. In the current research, we compared Korean and European Canadian university students to examine how domain satisfactions (satisfaction with healthy lifestyles, family relationships, appearance, financial situation, academic performance) are associated with life satisfaction and hedonic balance. We then examined the relative contributions of people's satisfaction ratings on the life domains to their life satisfaction and hedonic balance. Positive correlations were observed between satisfaction with each of the five life domains, and life satisfaction and hedonic balance across the two cultural groups. Interestingly, satisfactions with healthy lifestyles was the dominant predictor of Koreans' life satisfaction and hedonic balance. Satisfaction with appearance was the dominant predictor of European Canadians' life satisfaction and hedonic balance followed by satisfaction with healthy lifestyles. Overall, these results suggest that there are common life domains that contribute to subjective well-being and that there are specific life domains that may contribute more to subjective well-being depending on the culture.
Kim, Giyeong;Choi, Sang-Ki;Kim, Ju-Sup;Ahn, Hye-Rim
Journal of the Korean Society for Library and Information Science
/
v.48
no.3
/
pp.303-334
/
2014
This study aims to develop standard indicators and methodology for college & university libraries' evaluation based on the agreement among various stake-holders, then suggests a new evaluation system. For the goal, we identify purposes and required conditions, then develop indicators for the evaluation through open-ended interviews, a questionnaire survey, and focus group for reaching an agreement on the included indicators among the stake-holders, finally we construct the overall evaluation structure and weighting system. The overall structure is developed based on process-centered approach, then both the internal and functional viewpoint and external and service-oriented viewpoint are considered. The weighting system is based on the balance among the process categories, such as resources, process, and output elements. Additionally, we suggest methodology for the evaluation and annual improvement process for ongoing improvement of the evaluation system. We expect that the results from this study will contribute not only to the evaluation activities but also to active discussions on library performance and its predictor factors.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.1
/
pp.45-57
/
2005
In this paper, we extend the performance of bidirectional TCP connection over end-to-end network that uses transfer rate-based flow and congestion control. The sharing of a common buffer by TCP packets and acknowledgement has been known to result in an effect called ack compression, where acks of a connection arrive at the source bunched together, resulting in unfairness and degraded throughput. The degradation in throughput due to bidirectional traffic can be significant. Even in the simple case of symmetrical connections with adequate window size, the connection efficiency is improved about 20% for three levels of background traffic 2.5Mbps, 5.0Mbps and 7.5Mbps. Otherwise, the throughput of jitter is reduced about 50% because round trip delay time is smaller between source node and destination node. Also, we show that throughput curve is improved with connection rate algorithm which is proposed for TCP congetion avoidance as a function of aggressiveness threshold for three levels of background traffic 2.5Mbps, 5Mbps and 7.5Mbps. By analyzing the periodic bursty behavior of the source IP queue, we derive estimated for the maximum queue size and arrive at a simple predictor for the degraded throughput, applicable for relatively general situations.
Korean mid- and upper-level aviation turbulence guidance (KTG) system is developed using the unified model (UM)-based regional data assimilation and prediction system (RDAPS) of the Korea Meteorological Administration. The KTG system includes three steps. First, the KTG system calculates a suite of diagnostics in the UM-RDAPS domain. Second, component diagnostics that have different units and numerical magnitudes are normalized into the values between 0 and 1, according to their own thresholds in the KTG system. Finally, normalized diagnostics are combined into one KTG predictor by measuring the weighting scores based on the probability of detection, which is calculated using the observed pilot reports (PIREPs) exclusively of moderate-or-greater (MOG) and null (NIL) intensities. To investigate the optimal performance of the KTG system, two types (RD-KTG and UM-KTG) of the KTG systems are developed and evaluated using the PIREPs over Korea and East Asia. Component diagnostics and their thresholds in the RD-KTG are founded on the 8-yrs (2002.12-2010.11) MM5-based RDAPS (previous version of the RDAPS; ${\Delta}x$ = 30 km) and PIREPs data, while those in the UM-KTG are based on the 6 months (2010.12-2011.5) UM-based RDAPS (${\Delta}x$ = 12 km) and PIREPs data. In comparison between the RD-KTG and UM-KTG, overall performance of the UM-KTG (0.815) is better than that of the RD-KTG (0.79) during the recent 6 months, because forecasting skill for the upper-level wind is higher in the UM-RDAPS than in the MM5-RDAPS. It is also found that the UM-KTG is more efficient than the RD-KTG according to the statistical evaluations and sensitivity tests to the number of component diagnostics.
The physical environment can dramatically affect students' feeling and their behavior, educational attainment, and the way in which we do school activities. Unlimited access to campus areas without appropriate securities have reported an increase of crime in school area and safety issues has encouraged school facility planners to install securities devices at every corner of buildings. However, it is still questionable whether this approach is enough to protect students and staffs from the victimization of crime, including thefts, burglaries and sexual offences. There has been continued doubt about the safety of educational facilities where individual college students are studying and enjoying extra-curricular activities. Therefore, the purpose of this study is intended to investigate the effects of perception of safety by students on the level of academic performance at public outdoor environment of university campus. An extensive literature noted that the central element of modern school design principle mainly holds the theory of crime prevention through environmental design (CPTED) and the concept of defensible space. The second generation of CPTED also focused on social soft issues as well as situational factors, which extends beyond mere physical design to include social factors. The correlation analysis found that the effect of sense of safety does appear to be statistically significant on the facilitation of academic achievement. However, the analysis of Chi-square concluded that the perception of safety was not related to demographic and socio-economic profiles of the group except for gender. Further, stepwise multiple regression analysis revealed that the most prime predictor for academic achievement were 'safe public outdoor space/paths' at university campus environment, implying careful design of public open space and sidewalks based on the guideline of CPTED. The study also demonstrated that as the level of positive perception of safety rose, the overall academic achievement also responded to the specified rate (${\beta}=.99$). Finally, the findings reinforce an evidence that high-quality school environments are a positive factor in student academic performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.