Browse > Article
http://dx.doi.org/10.14191/Atmos.2011.21.4.497

Development of the Korean Mid- and Upper-Level Aviation Turbulence Guidance (KTG) System Using the Regional Unified Model  

Kim, Jung-Hoon (Department of Atmospheric Sciences, Yonsei University)
Chun, Hye-Yeong (Department of Atmospheric Sciences, Yonsei University)
Publication Information
Atmosphere / v.21, no.4, 2011 , pp. 497-506 More about this Journal
Abstract
Korean mid- and upper-level aviation turbulence guidance (KTG) system is developed using the unified model (UM)-based regional data assimilation and prediction system (RDAPS) of the Korea Meteorological Administration. The KTG system includes three steps. First, the KTG system calculates a suite of diagnostics in the UM-RDAPS domain. Second, component diagnostics that have different units and numerical magnitudes are normalized into the values between 0 and 1, according to their own thresholds in the KTG system. Finally, normalized diagnostics are combined into one KTG predictor by measuring the weighting scores based on the probability of detection, which is calculated using the observed pilot reports (PIREPs) exclusively of moderate-or-greater (MOG) and null (NIL) intensities. To investigate the optimal performance of the KTG system, two types (RD-KTG and UM-KTG) of the KTG systems are developed and evaluated using the PIREPs over Korea and East Asia. Component diagnostics and their thresholds in the RD-KTG are founded on the 8-yrs (2002.12-2010.11) MM5-based RDAPS (previous version of the RDAPS; ${\Delta}x$ = 30 km) and PIREPs data, while those in the UM-KTG are based on the 6 months (2010.12-2011.5) UM-based RDAPS (${\Delta}x$ = 12 km) and PIREPs data. In comparison between the RD-KTG and UM-KTG, overall performance of the UM-KTG (0.815) is better than that of the RD-KTG (0.79) during the recent 6 months, because forecasting skill for the upper-level wind is higher in the UM-RDAPS than in the MM5-RDAPS. It is also found that the UM-KTG is more efficient than the RD-KTG according to the statistical evaluations and sensitivity tests to the number of component diagnostics.
Keywords
mid- and upper-level turbulence; PIREPs; KTG system; forecasting skill;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 김정훈, 전혜영, 장욱, R. D. Sharman, 2009: 한국의 청천난류 예보 시스템에 대한 연구. Part II: Graphical Turbulence Guidance (GTG) 시스템. 대기, 19(3), 269-287.
2 민재식, 전혜영, 김정훈, 2011: 한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구. 대기, 21(1), 69-83.
3 손주형, 강기룡, 원성희, 박영연, 박윤호, 2011: 수치예보 시스템의 검증 (2010년). 3.2. 지역예보모델. 수치모델관리관실 기술보고서 2011-01, 발간등록번호:11-1360000-000230-10, 35-63.
4 장욱, 전혜영, 김정훈, 2009: 한국의 청천난류 예보 시스템에 대한 연구. Part I: 한국형 통합 난류 예측 알고리즘. 대기, 19(3), 255-268.
5 Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473-494.   DOI   ScienceOn
6 Cho, J. Y. N. and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere. 1. Observations. J. Geophys. Res., 106, 10223-10232.   DOI
7 Colson, D., and H. A. Panofsky, 1965: An index of clear-air turbulence. Quart. J. Roy. Meteor. Soc., 91, 507-513.   DOI
8 Dutton, J. A., and H. A. Panofsky, 1970: Clear air turbulence: A mystery may be unfolding. Science, 167, 937-944.   DOI
9 Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782.   DOI   ScienceOn
10 Ellrod, G. and D. Knapp, 1992: An objective clear-air turbulence forecasting technique: Verification and operational use. Wea. Forecasting., 7, 150-165.   DOI
11 Fahey, T. H., 1993: Northwest Airlines atmospheric hazards advisory and avoidance system. Preprints, 5th Conf. on Aviation, Range, and Aerospace Meteorology, Vienna, VA, Amer. Meteor. Soc., 409-413.
12 Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth generation Pen State/ NCAR mesoscale model. NCAR Tec Note, NCAR/TN-398+STR, pp 138.
13 Jaeger, E. B. and M. Sprenger, 2007: A Northern hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res., 112, D20106, doi:10.1029/2006JD008189.   DOI
14 Kim, J.-H. and H.-Y. Chun, 2010: A numerical study of clearair turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 2381-2403.   DOI   ScienceOn
15 Kim, J.-H., 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteor. Climatol., 50, 311-324.   DOI   ScienceOn
16 Kim, J.-H., H.-Y. Chun, R. D. Sharman, and T. L. Keller, 2011: Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. J. Appl. Meteor. Climatol., 50, 1936-1951.   DOI   ScienceOn
17 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR technical note, NCAR/TN-475+STR.
18 Koch, P., H. Wernli, and H. W. Davies, 2006: An event-based jet-stream climatology and typology. Int. J. Climatol., 26, 283-301.   DOI   ScienceOn
19 Marroquin, A., 1998: An advanced algorithm to diagnose atmospheric turbulence using numerical model output. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 79-81.
20 Mason, I., 1982: A model for assessment of weather forecasts. Aust. Met. Mag., 30, 677-688.
21 Sharpiro, M. A., 1978: Further evidence of the mesoscale and turbulence structure of upper level jet stream-frontal zone systems. Mon. Wea. Rev., 106, 1100-1111.   DOI
22 Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper- level turbulence forecasting. Wea. Forecasting, 21, 268-287.   DOI   ScienceOn