본 논문에서는 슈퍼스칼라에서 윈도우 크기에 따른 명령 페치율에 따라 혼합형 값 예측기의 성능을 평가한다. 일반적으로, 명령의 데이터 의존성은 명령의 페치수에 따라 증가된다. 그러므로, 명령 페치율이 증가할 때 값 예측기의 성능이 높다고 본다. 이러한 성능은 명령 페치 메카니즘인 컬랩싱 버퍼와 트레이스 캐쉬로 연구한다. 실험결과는 명령 윈도우 크기에 따른 명령 페치율 증가와 혼합형에서 non-tc 와 tc을 적용한 IPC와 예측률의 값 예측기의 성능 효과를 평가한다.
To improve the performance of PID controller of high order systems by model reduction, we proposed two model reduction methods. One, Original model with two point $({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$ in Nyquist curve used gradient base method and genetic algorithm. The other, Original model without two point$({\angle}G(jw)=\;-{\pi}/2,\;-{\pi})$in Nyquist curve used to add very small dead time. This method has annexed very small dead time on the base model for reduction, and we remove it after getting the reduced model, and , we improved Smith-predictor for a dead-time compensator using genetic algorithms. This method considered four points$({\angle}G(jw)=0,\;-\pi/2,\;-\pi,\;-3\pi/2)$ in the Nyquist curve to reduce steady state error between original and reduced model. It is shown that the proposed methods have more performance than the conventional method.
슈퍼스칼라 프로세서에서 명령어 수준 병렬성(Instruction Level Parallelism)을 적극적으로 활용하기 위해서는 명령들 사이에 존재하는 제어 종속관계 및 데이타 종속관계를 극복하는 것이 필수적이다. 데이타 값 예측은 하나의 명령 결과가 생성되기 전에 미리 결과 값을 예측하고 이 예측된 결과를 사용하여 데이타 종속관계가 있는 명령들을 투기적으로 실행(speculative execution)하는 기법이다. 본 논문에서는 동적 분류 능력을 갖는 혼합형 데이타 값 예측기를 제안한다. 제안된 예측기는 최근 값 예측기, 스트라이드 예측기 및 2 단계 예측기를 결합한 혼합형으로 구성되며, 예측되는 명령은 하드웨어에 의한 동적 분류에 의해 각 예측기로 할당된다. 각 명령들의 특성에 따라 각 예측기로 실행 시에 동적 분류됨으로써 각 예측기는 기존의 혼합형 방식보다도 더욱 효과적으로 활용될 수 있다. 제안된 방식의 타당성 검증을 위해 실행구동방식(execution-driven) 시뮬레이터를 사용하여 SPECint95 벤치마크를 시뮬레이션하여 비교한다. 실험 결과 Instruction Per Cycle 비교실험에서 2 단계 예측기 보다 0.36, 혼합형 예측기 보다 0.0l8의 성능을 보였고, 제안된 방식이 기존의 혼합형 방식보다 예측 정확도가 평균 16%가 향상되었고, 하드웨어 비용을 측정한 결과 45%의 감소효과를 얻었다.
본 논문에서 ILP (Instruction Level Parallelism)의 성능향상을 위하여 데이터 값들을 미리 예측하여 병렬로 이슈(issue)하고 수행하는 기존의 데이터 값 예측기(data value predictor)를 비교 분석하여 각 예측기의 예측율을 측정하고, 2-단계 데이터 값 예측기(Two-Level Data Value Predictor)와 혼합형 데이터 값 예측기(Hydrid Data Value Predictor)에서 발생되는 aiasing 을 측정하기 위해 수정된 데이터 값 예측기를 사용하여 측정한 결과 aliasing은 50% 감소하였지만 예측율에는 영향을 미치지 못함과 데이터 값 예측기의 예측율을 측정한 결과 혼합형 데이터 값 예측기의 예측율이 2-단계 데이터 값 예측기와 스트라이드 데이터 값 예측기(Stride Data Value Predictor)에서 평균 5.7%, 최근 값 예측기(Last Data Value Predictor)보다는 평균 38%의 예측 정확도가 높음을 입증하였다.
본 논문은 시간 응답을 과도응답과 정상상태 응답으로 분류하여 1차의 지연시간을 포함한 공정을 동정하는 새로운 모델링 방법을 제시했다. 먼저 공정의 입.출력 데이터를 분석하여 공정의 상태를 정상상태 응답과 과도상태 응답으로 분류한다. 그 다음 최소 자승법을 사용하여 정상상태 응답은 하나의 1차의 지연시간을 갖는 공정으로 추정하고, 과도상태 응답은 여러 개의 모델로 나누어 모델링 한다. 최적의 PID 동조법으로는 지연시간을 보상하는 Smith- Predictor 구조에 성능지수 ITAE값이 최소가 되도록 설계하였다. 시뮬레이션을 통하여 다양한 공정에 대하여 본 논문에서 제안한 방법을 적용하여, 모델축소 방법의 정확성 및 제어기 성능의 개선을 보였다.
본 연구에서는 신경회로망의 일종인 GRNN을 이용하여 동영상 대역분할 부호화에 적용하고자 하는 새로운 비선형 움직임 예측기를 제안하였다. 제안된 비선형 예측기의 성능은 가장 일반적으로 많이 사용되는 블록매칭 알고리즘과 비교하였다. 결과적으로 제안된 비선형 움직임 예측기는 블록매칭 알고리즘보다 2-3dB 성능이 우수함을 알 수 있었다. 특히, 제안된 예측기는 클러스터링 과정과 잡음 신호를 둔화시키는 기능이 있어서 원영상의 에지를 잘 보존하는 장점이 있음을 알 수 있다. 이러한 결과는 인간의 시각적 특성에 중요하며 동영상의 대역분할 부호화에서도 우수한 특성을 나타낸다.
To improve the performance of wide-issue superscalar processors, it is essential to increase the width of instruction fetch and the issue rate. Removal of control hazard has been put forward as a significant new source of instruction-level parallelism for superscalar processors and the conditional branch prediction is an important technique for improving processor performance. Branch mispredictions, however, waste a large number of cycles, inhibit out-of-order execution, and waste electric power on mis-speculated instructions. Hence, the branch predictor with higher accuracy is necessary for good processor performance. In global-history-based predictors like gshare and GAg, many mispredictions come from commit update of the branch history. Some works on this subject have discussed the need for speculative update of the history and recovery mechanisms for branch mispredictions. In this paper, we present a new mechanism for recovering the branch history after a misprediction. The proposed mechanism adds an age_counter to the original predictor and doubles the size of the branch history register. The age_counter counts the number of outstanding branches and uses it to recover the branch history register. Simulation results on the SimpleScalar 3.0/PISA tool set and the SPECINT95 benchmarks show that gshare and GAg with the proposed recovery mechanism improved the average prediction accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, respectively over the original predictor.
溜is paper is concerned with the controllers for time-delay systems which has an integrator. It is known that high performance can be obtained for the systems response and load disturbance rejection by adjusting the only three parameters of the modified Smith predictor. In the case of the time-delay systems with repeated poles, good performance cannot be obtained with the modified Smith predictor. But superior performance can be obtained through the intentional delay parameters mismatch. The calculating method for the approximation delay parameter values is proposed. Simulation results show the improved response characteristics with the proposed delay parameter values.
As processor's operational frequency increases and processors execute multiple instructions per cycle, the processor performance becomes more dependent on the load operand referencing latency and the data dependency. To reduce the operand fetch latency and to increase ILP by breaking the data dependency, we propose a value-address hybrid predictor using a reasonable size prediction buffer and analyse the performance improvement by the proposed predictor. Through the extensive simulation of 5 benchmark programs, the proposed hybrid prediction scheme accurately predicts 62.72% of all loads which are 12.64% higher than the value prediction scheme and show its cost-effectiveness compared to the address predition scheme. In addition, we analyse the performance improvement achieved by the stride management and the history of previous predictions.
시간지연이 존재하는 시스템의 제어기 설계에 많이 사용되는 Smith Predictor는 플랜트와 모델이 완전히 일치해야만 특성방정식에서 시간지연을 제거 할 수 있기 때문에 실제 공정에서는 적용하기가 매우 어렵다. 본 논문에서는 Smith Predictor의 모델을 플랜트와 일치한 식이 아닌 시간지연을 포함한 2차식 형태로 제안하여 큰 시간지연에서의 응답특성을 향상 시켰다. PI 제어기의 적분상수의 범위를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.