• Title/Summary/Keyword: Performance Modelling

Search Result 776, Processing Time 0.026 seconds

Lateral Control of High Speed Flight Based on Type-2 Fuzzy Logic (Type-2 Fuzzy logic에 기반 한 고속 항공기의 횡 운동 제어)

  • Song, Jin-Hwan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.479-486
    • /
    • 2013
  • There exist two major difficulties in developing flight control system: nonlinear dynamic characteristics and time-varying properties of parameters of aircraft. Instead of the difficulties, many high reliable and efficient control methodologies have been developed. But, most of the developed control systems are based on the exact mathematical modelling of aircraft and, in the absence of such a model, it is very difficult to derive performance, robustness and nominal stability. From these aspects, recently, some approaches to utilizing the intelligent control theories such as fuzzy logic control, neural network and genetic algorithm have appeared. In this paper, one advanced intelligent lateral control system of a high speed fight has been developed utilizing type-2 fuzzy logic, which can deduce the uncertainty problem of the conventional fuzzy logic. The results will be verified through computer simulation.

Function approximation of steam table using the neural networks (신경회로망을 이용한 증기표의 함수근사)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.459-466
    • /
    • 2006
  • Numerical values of thermodynamic properties such as temperature, pressure, dryness, volume, enthalpy and entropy are required in numerical analysis on evaluating the thermal performance. But the steam table itself cannot be used without modelling. From this point of view the neural network with function approximation characteristics can be an alternative. the multi-layer neural networks were made for saturated vapor region and superheated vapor region separately. For saturated vapor region the neural network consists of one input layer with 1 node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. For superheated vapor region it consists of one input layer with 2 nodes, two hidden layers with 15 and 25 nodes each and one output layer with 3 nodes. The proposed model gives very successful results with ${\pm}0.005%$ of percentage error for temperature, enthalpy and entropy and ${\pm}0.025%$ for pressure and specific volume. From these successful results, it is confirmed that the neural networks could be powerful method in function approximation of the steam table.

Analytical Modelling and Heuristic Algorithm for Object Transfer Latency in the Internet of Things (사물인터넷에서 객체전송지연을 계산하기 위한 수리적 모델링 및 휴리스틱 알고리즘의 개발)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • This paper aims to integrate the previous models about mean object transfer latency in one framework and analyze the result through the computational experience. The analytical object transfer latency model assumes the multiple packet losses and the Internet of Things(IoT) environment including multi-hop wireless network, where fast re-transmission is not possible due to small window. The model also considers the initial congestion window size and the multiple packet loss in one congestion window. Performance evaluation shows that the lower and upper bounds of the mean object transfer latency are almost the same when both transfer object size and packet loss rate are small. However, as packet loss rate increases, the size of the initial congestion window and the round-trip time affect the upper and lower bounds of the mean object transfer latency.

Night Purge Control Strategies With Outdoor Air Temperature Conditions for Central Cooling System (중앙냉방시스템의 외기온도조건을 고려한 나이트 퍼지 제어방안에 관한 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6759-6765
    • /
    • 2015
  • In this study, the effects of control strategies of night-purge control system on control characteristics and energy consumption for central cooling system in building are researched by simulation. The start time and set-point temperature for night-purge control with outdoor temperature changes and building cold storage performance are obtained. The system analysis modelling is done by using TRNSYS program package, and the control performances with suggested night-purge control method are compared with the existing control ones. As a result, the suggested night-purge control method shows maximum 16.8% and 28.6% energy saving in comparison with existing control method and conventional one without night-purge control, respectively.

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

Theoretical Development of Compaction Density (다짐밀도의 이론적 전개)

  • Huh, Jung-Do;Kim, Han-Yong;Nam, Young-Kug
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.147-156
    • /
    • 2000
  • Compaction is known to critically affect pavement performance. Due to its importance, a theoretical modelling of compacted density in the term of number of roller coverages is attempted by assuming compaction process essentially identical to pavement rutting. Excellent data fittings by the developed equation may prove the validation of assumptions made as well as justification of its use. According to the derived equation, a plot of density difference with respect to number of roller coverages in the logarithmic scale Produces a linear relationship. However, this linearity is turned out to be deviated by cooling effect, change of amplitude and frequency. Investigation of these three factors proposes a new generalized compaction density equation, which shows a promising future. By applying this general formula, the equations for the number of roller coverages required and the final compaction density obtained for a particular compaction project is derived first time in compaction research.

  • PDF

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Modelling of effluent and GHGs for wastewater treatment plants using by MS Excel simulator(PKES) (MS Excel 시뮬레이터(PKES)를 이용한 하수처리장 유출수 및 온실가스 모델링)

  • Bin, Jung-In;Lee, Byung-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.735-745
    • /
    • 2014
  • This paper presents PKES(PuKyung -Excel based Simulator) for WWTPs(wastewater treatment plants) by using MS Excel and VBA(Visual Basic for Application). PKES is a user-friendly simulator for the design and optimization of the whole plant including biological and physico-chemical processes for the wastewater and sludge treatment. PKES calculates the performance under steady or dynamic state and allows changing the mathematical model by the user. Mathematical model implemented in PKES is a improved integration model based on ASM2d and ADM1 for simulation of AS(activated sludge) and AD(anaerobic digestion). Gaseous components of $N_2$, $N_2O$, $CO_2$ and $CH_4$ are added for estimation of GHGs(greenhouse gases) emission. The simulation results for comparison between PKES and Aquasim(EAWAG) showed about the same effluent concentrations. As a result of verification using by measured data of BOD, TSS, TN and TP for 2 years of operation, calculated effluent concentrations were similar to measured effluent concentrations. The values of average RMSE(root mean square error) were 1.9, 0.8, 1.6 and 0.2 mg/L for BOD, TSS, TN and TP, respectively. Total GHGs emission of WWTP calculated by PKES was 138.5 ton-$CO_2$/day and GHGs emissions of $N_2O$, $CO_2$ and $CH_4$ were calculated at 21.7, 28.9 and 87.9 ton-$CO_2$/day, respectively. GHGs emission of activated sludge was 32.5 % and that of anaerobic digestion was 67.5 %.

Analysis and Modelling of Vibration Performance for Multi-layered Corrugated Structure

  • Kim, Jin Nyul;Sim, Jae Min;Park, Min Jung;Kim, Ghi Seok;Kim, Jongsoon;Park, Jong Min
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze for resonant frequency, vibration transmissibility and damping ratio of multi-layered corrugated structures using a random vibration test. Methods: The random vibration test was performed by the ASTM D4728 specifications using two paperboards (S120, K180) and two types of flutes (A/F, B/F). Damping ratio of the multi-layered corrugated structures was estimated using a theoretical equation derived from the measured resonant frequency and transmissibility. Results: The resonant frequency and vibration transmissibility of the multi-layered corrugated structures of K180 and B-flute were higher than those of S120 and A-flute, respectively; however, the damping ratio of each sample had the opposite tendency. The resonant frequency was inversely proportional to the sample thickness and static stress; vibration transmissibility and damping ratio were not correlated with sample thickness and static stress. In addition, we developed a mathematical model of the resonant frequency with variables of sample thickness and static stress. Conclusions: Results of this study can be useful for environment-friendly and optimal packaging design since vibration has been a key factor in cushioning packaging design.