• Title/Summary/Keyword: Performance Evaluations

Search Result 881, Processing Time 0.025 seconds

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

A Study on Service Design of Public transportation for Transportation Vulnerable - Focused on elderly and Foreigner - (교통약자를 고려한 대중교통 서비스 디자인 연구 - 고령자 및 외국인 중심으로 -)

  • Lee, Seung Min;Pan, Young Hwan;Song, In ho
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.223-236
    • /
    • 2016
  • The infrastructure of public transportation of Seoul which has been developed in parallel with the progress of modernization receives successful performance evaluation at home and abroad, currently representing the highest transport distribution ratio. In spite of this fact, the public transportation of Seoul, which has entered into advanced phase of services, still leaves much to be desired, in particular, the mobility considering the transportation vulnerable is not well assured. It is time to provide proper supports for the efficient mobility of public transportation in accordance with the social changes present in the aging and multicultural society. This study inquired about the current status of public transportation and that of its users. In addition, the main inquiry target was oriented to the elderly and foreigners for observation and investigation, as well as for the analysis of their behavior. Furthermore, through in-depth interviews, inconvenient factors have been found according to public transportation means and its usage phase, by carrying out detailed evaluations of public transportation services. Based on this, the enhancement elements were defined and the corresponding concept was designed through a series of idea workshops, and this study intended to contribute to improving future public transportation services by proposing the improvement scheme applicable to the upcoming public transportation.

Research on Selecting Influential Climatic Factors and Optimal Timing Exploration for a Rice Production Forecast Model Using Weather Data

  • Jin-Kyeong Seo;Da-Jeong Choi;Juryon Paik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.57-65
    • /
    • 2023
  • Various studies to enhance the accuracy of rice production forecasting are focused on improving the accuracy of the models. In contrast, there is a relative lack of research regarding the data itself, which the prediction models are applied to. When applying the same dependent variable and prediction model to two different sets of rice production data composed of distinct features, discrepancies in results can occur. It is challenging to determine which dataset yields superior results under such circumstances. To address this issue, by identifying potential influential features within the data before applying the prediction model and centering the modeling around these, it is possible to achieve stable prediction results regardless of the composition of the data. In this study, we propose a method to adjust the composition of the data's features in order to select optimal base variables, aiding in achieving stable and consistent predictions for rice production. This method makes use of the Korea Meteorological Administration's ASOS data. The findings of this study are expected to make a substantial contribution towards enhancing the utility of performance evaluations in future research endeavors.

Experimental Study on Energy Transmission Rate of Horizontal Dual Plate by Random Wave System (수평형(水平型) 이열(二列) 조합판(組合板)의 투과율(透過率) 산정(算定)을 위한 실험적(實驗的) 연구(硏究))

  • Kweon, Hyuck-Min;Kim, Young-Hak;Kee, Sung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.421-428
    • /
    • 2008
  • For last decades, the rapid coastal erosion process spreading along Korean peninsular has become a nuisance especially for tourism and local economy. Global warming and sea-level rise demand persistently new coastal protection strategies against the conventional methods using armored structures. In a view of this, Kweon et al. (2007) has proposed a new type of horizontal steel plates for an ideal candidate as eco-friendly detached breakwater systems for global warming era. The breakwater is composed of piles and horizontal porous plates that was devised for the optimized blockage effects and wave energy dissipations. This system provides outstanding performances as wave barrier and added advantages such as a rapid installation, an easy relocation, a perfect water circulation for the stagnation of pollutions in sheltered regions. The present experimental study focuses on the performance evaluations of the proposed system in wind wave conditions as a wave dissipator and reflector. The reflection, transmission, and energy dissipation of the random waves has been discussed in detail based on a newly proposed relation between wave steepness and a plate width normalized by wave length that are major factors affecting the wave transmission.

Approximate Top-k Labeled Subgraph Matching Scheme Based on Word Embedding (워드 임베딩 기반 근사 Top-k 레이블 서브그래프 매칭 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.33-43
    • /
    • 2022
  • Labeled graphs are used to represent entities, their relationships, and their structures in real data such as knowledge graphs and protein interactions. With the rapid development of IT and the explosive increase in data, there has been a need for a subgraph matching technology to provide information that the user is interested in. In this paper, we propose an approximate Top-k labeled subgraph matching scheme that considers the semantic similarity of labels and the difference in graph structure. The proposed scheme utilizes a learning model using FastText in order to consider the semantic similarity of a label. In addition, the label similarity graph(LSG) is used for approximate subgraph matching by calculating similarity values between labels in advance. Through the LSG, we can resolve the limitations of the existing schemes that subgraph expansion is possible only if the labels match exactly. It supports structural similarity for a query graph by performing searches up to 2-hop. Based on the similarity value, we provide k subgraph matching results. We conduct various performance evaluations in order to show the superiority of the proposed scheme.

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Space Planet Exploration Rover Climbing Test Site Design (우주 행성 탐사 로버 등판 시험장 설계)

  • Byung-Hyun Ryu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

The Success Factors for Self-Service Business Intelligence System: Cases of Korean Companies (사용자 주도 비즈니스 인텔리전스 성공요인 고찰: 한국 기업 사례를 중심으로)

  • JungIm Lee;Soyoung Yoo;Ingoo Han
    • Knowledge Management Research
    • /
    • v.24 no.3
    • /
    • pp.127-148
    • /
    • 2023
  • Traditional Business Intelligence environment is limited to support the rapidly changing businesses and the exponential growth of data in both volume and complexity of data. Companies should shift their business intelligence environment into Self-Service Business Intelligence (SSBI) environment in order to make smarter and faster decisions. However, firms seem to face various challenges in implementing and leveraging the effective business intelligence system, and academics do not provide sufficient studies related including the success factors of SSBI. This study analyzes the three cases of Korean companies in depth, their development process and the assessment of business intelligence, based on the theoretical model on the key success factors of business intelligence systems. The comparative analysis of the three cases including project managers' interviews and performance evaluations provide rich implications for the successful adoption and the use of business intelligence systems of firms. The study is expected to provide useful references for firms to fully leverage the effects of business intelligence systems and upgrade towards self-service business intelligence systems.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.