• Title/Summary/Keyword: Performance Control

Search Result 25,332, Processing Time 0.05 seconds

A Study on Radiologists' Awareness and Performance of Hospital Infection Prevention (방사선사의 병원감염예방에 대한 인지도와 수행도에 관한 연구)

  • Yeo, Jin-Dong;Jeon, Byeong-Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.321-333
    • /
    • 2012
  • The purpose of this study is to examine radiologists' awareness and performance of hospital infection control, providing basic information needed to improve and educate how to control hospital infection. The subjects' awareness and performance of hospital infection control were respectively 141.05 and 138.15 points in average score on a 150-point scale. In all sub-areas of the control, the higher the awareness was, the higher the performance was, but the latter was relatively lower than the former. Factors that were having statistically significant effects on that awareness included the necessity of infection control education, participation or non-participation in infection prevention education and recognition or non-recognition of patients' disease state. And factors that were having statistically significant influences on that performance included participation or non-participation in infection prevention education, recognition or non-recognition of patients' disease state and the foresaid awareness itself.

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Control System Design for Marine Vessel Satisfying Mixed H2/H Performance Condition (H2/H 설계사양을 만족하는 선박운동제어계 설계에 관한 연구)

  • Kang, Chang-Nam;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.846-852
    • /
    • 2013
  • In this paper, the authors propose a new approach to control problem of the marine vessels which are moored or controlled by actuators. The vessel control problem in the specified area is called a DPS (Dynamic Positioning System). The main objective of this paper is to obtain more useful control design method for DPS. In this problem, a complicate fact is control allocation which is a numerical method for distributing the control signal to the controlled system. For this, many results have been given and verified by other researchers using two individual processes. It means that the controller design and control allocation design process are carried out individually. In this paper, the authors give more sophisticated design solution on this issue. In which the controller design and control allocation problem are unified by a robust controller design problem. In other word, the stability of the closed-loop system, control performance and allocation problem are unified by an LMI (Linear Matrix Inequality) constraint based on $H_2/H_{\infty}$ mixed design framework. The usefulness of proposed approach is verified by simulation with a supply vessel model and found works well.

Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement (차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교)

  • Yoon, Moonyoon;Baek, Seunghwan;Choi, Jungkwang;Boo, Kwangsuck;Kim, Heungseob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

A Measurement of Team Efficiency of Operators in the Advanced Main Control Room of Nuclear Power Plant (국내 원자력발전소 첨단 주제어실 운전원의 팀 효율성 측정 방법에 관한 연구)

  • Kim, Sa-Kil;Byun, Seong-Nam;Lee, Dhong-Hoon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • An increased use of teams of actors within complex systems has led to the emergence of various approaches for the assessment of different features associated with team performance. Over the last two decades, the performance of teams in complex systems has received considerable attention from the human factors community, and a number of methods have been developed in order to assess and evaluate team performance. The purpose of this paper is to propose a methodology for measuring team efficiency of operators in the advanced main control room of Korean nuclear power plant. Team efficiency is an index which is estimated of gabs between individual performances and team performance. The index was developed to compare among teams through past all performance measurements.

A Performance Evaluation of Zone Smoke Control Systems for Railway Underground Transit Passage by Smoke Control TAB (제연 TAB를 통한 철도 지하환승통로의 거실제연설비 성능평가)

  • Seol, Seok-Kyun;Kim, Joon-Hwan;Park, Min-Seok;Oh, Seung-Min;Ahn, Yong-Chul;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study conducted Testing, Adjusting, and Balancing (TAB), which is a type of field performance evaluation experiment of a zone smoke-control system, at a railway underground transit passage installed with a zone smoke- control system to find problems and improvements for ensuring performance. TAB for the smoke control system was classified into several procedures, such as design data review, duct leakage test, field measurement of the airflow rate, velocity of the fan and duct, and a smoke test. Through the duct leakage test, the system leakage ratio was examined to prove the duct sealing. The iImprovement of the smoke control airflow problems due to the lack of fan static pressure loss was the secured performance. The performance of the smoke control fan was secured by improvements of the smoke control airflow rate problems caused by the loss of static pressure in the intake duct. The smoke test in the smoke control zone confirmed that the damper operating schedule subject was influenced by natural wind or train wind.

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

A Study on the Performance Measure for Recoverable Item Control (수리 가능한 부품통제를 위한 성능측정수단에 관한 연구)

  • 김지승;김병극
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.23-28
    • /
    • 1996
  • This paper deals with performance measures for recoverable item control where the demand process is time-dependent. The performance measure is essential for modelling a multi-echelon inventory problem for repairable items. Most repairable items are expensive and have a great influence on the performance of equipments. Thus the information on these items is very useful to the decision maker. The purpose of this paper is to derive the system performance measure and the part(component) performance measure considering a cannibalization policy under the dynamic environment.

  • PDF

Experimental Study of Robust Control considering Structural Uncertainties (구조물의 모델링 불확실성을 고려한 강인제어실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.501-508
    • /
    • 2000
  • It is demanded to find the dynamic model of a real structure to design a controller. However, as the structure has inherently infinite number of degree-of-freedom, it is impossible to obtain an exact dynamic model of the structure. Instead a reduction model with finite degree-of-freedom is used for the design of a controller. So there exists uncertainty between a real model and a reduction model which causes poor performance of control. All these uncertainties can degrade the control performance and even cause the control instability. Thus, robust control strategy considering the above uncertainties can be an alternative one to guarantee the performance and stability of the control. This study deals with the experimental verification of robust controller design for the active mass driver. $\mu$-synthesis technique is employed as a robust control strategy. Some weights are chosen based on the difference between the initial plant with which the controller is designed and the perturbed plant to be controlled having the actuator uncertainty. The robustness of $\mu$-synthesis technique is compared with the result of LQG strategy, which does not consider the uncertainty.

  • PDF