Akhilanand Chaurasia;Arunkumar Namachivayam;Revan Birke Koca-Unsal;Jae-Hong Lee
Journal of Periodontal and Implant Science
/
v.54
no.1
/
pp.3-12
/
2024
Deep learning (DL) offers promising performance in computer vision tasks and is highly suitable for dental image recognition and analysis. We evaluated the accuracy of DL algorithms in identifying and classifying dental implant systems (DISs) using dental imaging. In this systematic review and meta-analysis, we explored the MEDLINE/PubMed, Scopus, Embase, and Google Scholar databases and identified studies published between January 2011 and March 2022. Studies conducted on DL approaches for DIS identification or classification were included, and the accuracy of the DL models was evaluated using panoramic and periapical radiographic images. The quality of the selected studies was assessed using QUADAS-2. This review was registered with PROSPERO (CRDCRD42022309624). From 1,293 identified records, 9 studies were included in this systematic review and meta-analysis. The DL-based implant classification accuracy was no less than 70.75% (95% confidence interval [CI], 65.6%-75.9%) and no higher than 98.19 (95% CI, 97.8%-98.5%). The weighted accuracy was calculated, and the pooled sample size was 46,645, with an overall accuracy of 92.16% (95% CI, 90.8%-93.5%). The risk of bias and applicability concerns were judged as high for most studies, mainly regarding data selection and reference standards. DL models showed high accuracy in identifying and classifying DISs using panoramic and periapical radiographic images. Therefore, DL models are promising prospects for use as decision aids and decision-making tools; however, there are limitations with respect to their application in actual clinical practice.
Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.
Purpose: This study aims to verify the effectiveness of acute anodal transcranial direct current stimulation (A-tDCS) using Halo Sport headset device on golf performance in professional golfers. Research design, data, and methodology: Eight professional golfers who voluntary participated in high-level golf tournaments were recruited in this study. They attended one single-session intervention which was stimulated by Halo Sport headset device (n=8). The A-tDCS halo sport session lasted for 20 minutes and stimulated on the motor control area of the cortex (M1). Four golf swing performance tasks (driver, iron, 100-yard shot, 50-yard shot) were performed before and after halo intervention. Key indicators of golf swing performance (Club Speed, Face Angle, Ball Speed, Smash Factor, Spin Rate, Side, Carry, Total) were collected by Trackman launch monitor. Results: In Halo session, there were no found statistical significance in driver, iron and approach (100, 50 yards) after intervention (P<0.05). Even some of variables (face angle, smash factor, carry and total distance) in driver, distance accuracy of 100 yards and direction accuracy of 50 yards were slightly improved tendency, but it was not significant (P<0.05). Meanwhile, there was any enhance all of variables in iron. Conclusions: As a result, the current study concludes that the acute A-tDCS halo sport intervention has no effect on the positive golf performance improvement for professional players. Further implications were discussed.
Purpose: With a view to providing basic data to develop cardiopulmonary resuscitation education suitable for elementary students, the cardiopulmonary resuscitation education was conducted to grasp students' knowledge, skills accuracy and the attitude change before and after the education. Methods: Convenience sampling was made on fourth and fifth graders(total-35 students) of S elementary school located in K city, Chungcheongnam-do, and this was a pre-experiment research designed before and after choosing a single group. In terms of methods, specifically we, researchers ; 1) Handed out questionnaires to students directly to make them fill in firsthand and collected the questionnaires. 2) Utilized PPT materials based on 2005 AHA guideline and DVD materials of AHA, to give students theoretical education of cardiopulmonary resuscitation. We used Anne/SkillReporter$^{(R)}$ torso produced by Leardal Inc, and Little Anne to conduct practical education individually. 3) Asked students to give Anne/SkillReporter$^{(R)}$ torso cardiopulmonary resuscitation five times with the ratio of 30 : 2, and then one of researchers filled in the evaluation sheet individually. 4) Evaluated the accuracy of students' ability to perform the resuscitation based on the record of Anne/SkillReporter$^{(R)}$ integrated printer(which was the objective tool to grasp students' skills accuracy). 5) Gave out questionnaires to make students fill them in and then collected them. after completing the practical evaluation. Results: 1) In case of the attitude about cardiopulmonary resuscitation, Students' confidency rose from 19.28%(before the education) to 93.57(after the education)- which is a positive change. 2) As the result of the education, some elementary students scored 11 points (full score-16 points), up from 5 points before the education, in terms of the knowledge about cardiopulmonary resuscitation. The average point also reached 13.14 points(after the education), jump from 8.37(before the education), which was the rise of 29.8%. 3) When it comes to the practical performance, the skills accuracy was 80.93% on average, and the calculation method was as follows: total items were 16, and each item was marked form 0 to 2 points, meaning the full score was 32 points. The minimum score was 19 points and the maximum was 32($M{\pm}SD=25.90{\pm}2.88$), which was calculated based on percentage. 4) Regarding skills accuracy, respiration accuracy(%)($M{\pm}SD=30.20{\pm}27.16$) was higher than pressure accuracy(%) ($M{\pm}SD=15.34{\pm}25.27$). Conclusion: The result showed that students' attitude on cardiopulmonary resuscitation changed positively. and meaningful difference(p = .00) existed in the change of students' knowledge. In terms of skills accuracy. chest compression and airway control showed high accuracy, but the result of Anne/SkillReporter$^{(R)}$ performance showed that the accuracy of chest compression was lower than that of mouth-to-mouth resuscitation.
We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.
The FSA(Force Sensitive Application) system measures hand force by using force resistance sensors. Compared to conventional hand force measurement systems such as Lafayette hand dynamometer and Jamar hydraulic hand dynamometer, the FSA system can be applied to analyze use of hand forces while the hand is manipulating objects for a task, However, the measurement performance of the FSA system has not been objectively evaluated. The present study tested the FSA system in terms of stability, repeatability, accuracy, and linearity. It is shown that the FSA system has good stability (CV$\leq$0.02) and linearity($R^2$=0.82), but has low repeatability(CV=$0.11{\sim}0.19$) and accuracy(22% of underevaluation on average). This performance result indicates that measurements from the FSA system should be used for relative comparison rather than for absolute comparison.
This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.
Journal of the Korean Society for Aviation and Aeronautics
/
v.18
no.1
/
pp.39-44
/
2010
A method is presented of dynamic determination of mode transition probability for IMM in order to improve the accuracy performance of maneuvering target tracking for air traffic control surveillance processing system under multiple radar environment. It is shown that dynamic determination of mode transition probability based on the time intervals between the data input from multiple radars gives the optimized performance in terms of position estimation accuracy.
The performance of active power filter depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was verified by means of simulation with MATLAB. The simulation result confirm that the proposed reference signal generator can be utilized for the active power filter.
The performance of an active power filter(APF) depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was first verified through a simulation with MATLAB. Furthermore, the application of feasibility was evaluated through experimenting with a single-phase APF prototype based on the proposed reference generator, which was implemented using the TMS320C31 floating-point signal processor. Both simulations and experimental results confirm that our reference signal generator can be used successfully in practical active power filters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.