• Title/Summary/Keyword: Perforated muffler

Search Result 33, Processing Time 0.025 seconds

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

A study on the performance of the perforated tube exhaust muffler (다공형 배기 소음기의 성능에 관한 연구)

  • 권영필;이동훈;방정환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.48-59
    • /
    • 1992
  • This study is on the performance of the perforated tube muffler when it operates as an exhaust silencer with through-flow, steady or pulsating. Theoretical estimation of the insertion loss was made by means of transfer matrix and by using the impedance equation for the perforated tube obtained for the case of low-speed steady through-flow. Experiment was performed for the measurement of the insertion loss at two flow conditions. The one is a steady flow from the exhaust pipe of an idling diesel engine. The effect of the through-flow velocity and steadiness on the muffler performance was obtained. By comparing the theoretical prediction with the experimental result, the validity of the impedance equation in the theoretical model was discussed. It has been found that steadiness as well as magnitude of the through-flow has a significant effect on the performance of the perforated tube muffler. Especially, the self-noise due to the pulsating flow in the engine exhaust system must be taken into account for the prediction of the muffler performance.

  • PDF

Analysis of non-uniformly perforated muffler in concentric resonator type

  • Delaigue Antoine;Ih Jeong-Guon;Guyader Jean L.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.379-382
    • /
    • 2001
  • In the muffler industry, the main purpose of the research works is to determine a way to increase the TL (Transmission Loss) properties of the muffler, without deteriorating the back pressure influence. In order to obtain better results, several works have been done by changing the geometrical characteristics of the muffler or the type of the muffler. This work will focus on the perforated muffler components with concentric chamber, to investigate the effect of a non-uniform porosity along the inner perforated tube of the muffler on the TL. It is noted that varying the perforation ratio affects the peaks frequencies of the TL, especially fer $2\pi < kL < 4\pi$ (in the case of L : 200mm for the concentric resonator). The magnitudes of the TL, for this range of frequencies, vary noticeably by changing the porosity distribution.

  • PDF

Optimal Design of a Muffler with Perforated Plates Considering Pressure Drop (압력 강하를 고려한 머플러 천공판 최적설계)

  • Choi, Dong Wook;Lee, Jin Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • An acoustical shape optimization problem is formulated for optimal design of a perforated reactive muffler with offset inlet/outlet. The mean transmission loss value in a target frequency range is maximized for an allowed pressure drop value between an inlet and an outlet. Partitions in the chamber are divided into several sub-partitions, whose lengths are selected as design variables. Each sub-partition has the same number of holes, whose sizes are equal. A finite element model is employed for acoustical and flow analyses. A gradient-based optimization algorithm is used to obtain an optimal muffler. The acoustical and fluidic characteristics of the optimal muffler are compared with those of a reference muffler. Validation experiment is carried out to support the effectiveness of our suggested method.

Optimization of the Multi-chamber Perforated Muffler for the Air Processing Unit of the Fuel Cell Electric Vehicle (연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구)

  • Kim, Eui-Youl;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.736-745
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

A study on the performance of the perforated-tube muffler (다공형 소음기의 성능에 관한 연구)

  • 권영필;현길학;서기원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.85-96
    • /
    • 1990
  • The object of this study is to develop the computer program to predict the transmission loss of a perforated tube muffler with mean flow, and to investigate the influence of porosity and mean flow on the performance of the muffler. The numerical model is made by dividing the muffler into small segments and estimating the transfer matrices for each segment. The computer program is developed for the calculation of the transmission loss of a through-or cross-flow perforated muffler. The experiment is performed for the measurement of the transmission loss and/or the pressure drop for various porosity and flow velocity. From the comparison between computation and experiment, is known that the numerical model agrees well with the experimental result. The effect of porosity and flow velocity on the acoustic performance and the flow resistance of a muffler is presented.

  • PDF

Muffler Analysis Associated with the Porosity Changes of the Perforated Plate (다공판 공극률에 따른 머플러 소음성능 해석 및 평가)

  • Bae, Kyeong-Won;Jeong, Weui-Bong;Ahn, Se-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.679-681
    • /
    • 2014
  • By this time, the study of mufflers has been progressed a lot. However, we don't have enough information about what some factors in muffler have an influence on transmission loss. So, we examined the tendency of the transmission loss depending on the porosity of perforated plates. We tested mufflers currently in use and changed porosity of perforated plates in mufflers to find out tendency of the transmission loss. As a result, the tendency of the transmission loss was shown differently depending on the position of perforated plate.

  • PDF

The Effect of Insertion Loss on the Element of Exhaust Muffler (배기 소음기 구조가 삽입손실에 미치는 영향)

  • 강동림;김영호;전현부기;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.42-51
    • /
    • 2000
  • The performances of the simple expansion, perforated tube, and conical-connector type as an exhaust muffler are shown in this study. Applying a model in which the method of four-pole parameter is used makes theoretical estimation of the insertion loss. Experiment is performed for the measurement of the insertion loss under four cases according to the variation of the tail pipe length. By comparing the theoretical prediction with the experimental results, the validity of the modeling using the method of four-pole parameter is verified. The personal computer simulation programs for the above mentioned theory on the muffler design have been developed and exhaust sound level measurements have been carried out for simple expansion muffler, conical-connector muffler, perforated tube mufflers and the combined type of conical-connector and simple expansion muffler. The measured results for attenuation characteristics of noise for each muffler are compared with the computed theoretical results to verity the confidence and applicable limits of the theoretical equation derived.

  • PDF

Experimental Study on Acoustic Characteristics of Perforated Tube and Perforated Tube Muffler (다공관 및 다공형 소음기의 음향학적 특성에 대한 실험적 연구)

  • Yoon, Doo-Byung;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.62-72
    • /
    • 1995
  • The acoustic characteristics of perforated tube muffler are studied in terms of non-dimensional wavenumber ka and admittance-ratio AZ. This study includes not only the case of perforated tubes having uniform hole distribution along the length but also the case of having non-uniform hole distributions. The acoustic hole impedance and transmission loss of perforated tube of which has various hole distributions were measured. The experimental results demonstrated that the transmission loss of perforated tube is a function of non-dimensional wave number ka and admittance-ratio AZ. The transmission loss of perforated tube muffler is predicted by the numerical method which is based on Sullivans and compared with the experimental ones.

  • PDF

Optimization of the multi-chamber perforated muffler for the air processing unit of the fuel cell electric vehicle (연료전지 자동차용 흡기 소음기의 설계 변수 최적화에 관한 연구)

  • Kim, Eui-Youl;Kim, Min-Soo;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.342-350
    • /
    • 2009
  • Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Since the electrochemical reaction in the fuel cell stack dose not generate any noise, Fuel cell systems are expected to operated much quieter than combustion engines. However, the tonal noise and the broad band noise caused by a centrifugal compressor and an electric motor cause which is required to feed the ambient air to the cathode of the fuel cell stack with high pressure. In this study, the multi-camber perforated muffler is used to reduce noise. We propose optimized muffler model using an axiomatic design method that optimizes the parameters of perforated muffler while keeping the volume of muffler minimized.

  • PDF