• Title/Summary/Keyword: Perfluorinated compounds (PFCs)

Search Result 30, Processing Time 0.027 seconds

Environmental Distribution and Fate of Perfluorinated Compounds (PFCs) as Emerging POPs: Physico-Chemical Properties, Emission, Contamination Level, Inter-phase Distribution and Long-Range Transport (잠재적 POPs로서의 과불소화화합물의 환경 내 분포 및 거동: 물성, 환경 내 농도수준, 상 분배 및 장거리이동을 중심으로)

  • Kim, Seung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.143-164
    • /
    • 2008
  • Concern about perfluorinated compounds (PFCs) is growing nationally as well as globally. PFCs could be considered emerging POPs due to their environmentally persistent, bioaccumulative, and potentially harmful properties. Moreover. perfluoroalkylates (PFAs) such as PFOS and PFOA are reported to experience long-range transport (LRT) to the Arctic in spite of their low volatility and strong solubility. The possible pathways contributing to LRT have been proposed but are still in debate in combination with unclear source definition and uncertain physico-chemical properties. The environmental fate of PFCs is more complicated because of the presence of precursors that are degraded to PFAs and are extremely different from their daughters, PFAs. in physico-chemical properties. To what extent and through what pathways are human and wildlife exposed is determined by the environmental fate and distribution of PFCs. To define uncertainties in fate and distribution thus is critical to prevent erroneous policy and/or determination related with exposure and risk reduction. This article aimed to review controversy and/or uncertain issues for the environmental fate and distribution of PFCs and to prospect research topics necessary to dissolve uncertainties.

Distribution and Risk Assessment of Perfluorinated Compounds (PFCs) in Major Drinking Water Treatment Plants, Korea (국내 주요 정수장의 과불화화합물 분포 및 위해성 평가)

  • Son, Boyoung;Lee, Leenae;Yang, Mihee;Park, Sangmin;Pyo, Heesoo;Lee, Wonsuk;Park, Juhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.491-499
    • /
    • 2017
  • The chemical structures of perfluorinated compounds(PFCs) have unique properties such as thermal and chemical stability that make them useful components in a wide variety of consumer and industrial products. Two of these PFCs, perfluorooctane sulfonate(PFOS) and perfluorooctanoic acid(PFOA), have received attention and were the most commonly detected. In this study it was analyzed the concentrations of 8 PFCs in samples were collected from drinking water treatment plants for 5 years(2012-2016). PFOS and PFOA were also high concentration and frequency. The mean concentrations of PFOA and PFOS were detected $0.0026-0.0069{\mu}g/L$ and $0.0009-0.0024{\mu}g/L$ in samples from drinking water treatment plants. These were relatively lower or similar compared to PFOS concentrations in Osaka(Japan). In general, these levels are below health-based values set by international authoritative bodies for drinking water. These results will be serve as the first monitoring data for PFCs in drinking water and be useful for characterizing the concentration distribution and management of PFCs in future studies.

Monitoring of Perfluorinated Compounds (PFCs) in the Yeongsan River Water System (영산강 수계에서 과불화 화합물의 모니터링)

  • Kwon, Bum Gun;Lim, Chae-Sung;Lim, Hye-Jung;Na, Suk-Hyun;Kwon, Joongkeun;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.303-311
    • /
    • 2015
  • To determine the concentrations of selected 10 perfluorinated compounds (PFCs), a field study was conducted in the water body of Yeongsan River Water System. Raw water samples were collected in the spring and the fall, respectively, which included 18 sampling sites. Collected samples were equally mixed and then served as an analytical sample. The concentration of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) were in range of 20.80-92.0 ng/L and ND-28.40 ng/L respectively. Perfluorononanoate (PFNA) and perfluorohexanesulfonate (PFHxS) were ranged from ND to 42.20 ng/L and from ND to 11.47 ng/L. The detection frequencies of other PFCs selected in this study were very sparse at very low concentrations, except for PFOS, PFOA, PFNA and PFHxS. PFOS was higher detection frequency and concentration in both spring and fall, PFOA and PFNA were in spring, and PFHxS was in fall. As a result, the observed concentrations of PFCs in the downtown water area of Gwangju, located in the wastewater treatment plants, were relatively higher than other sampling points.

Detection of Perfluorinated Compounds (PFCs) in Nakdong River Basin (낙동강 수계에서의 과불화 화합물(PFCs) 검출 특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoom, Hoon-Sik;Choi, Jin-Taek;Kwon, Ki-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.84-93
    • /
    • 2013
  • The aims of this study were to investigate and confirm the occurrence and distribution patterns of perfluorinated compounds (PFCs) in Nakdong River basin (mainstream and its tributaries). 7 (PFOS, PFHpA, PFOA, PFNA, PFDA, PFUnDA and PFDoDA) out of 11 PFCs were detected in 29 sampling sites and PFOA and PFHpA were predominant compounds in upstream, but PFUnDA, PFDoDA and PFOS were predominant compounds in middle stream of Nakdong River basin. The total concentration levels of PFCs on February 2009 and on August 2009 in surface water samples ranged from 4.3. to 1168.2 ng/L and 16.4 to 627.8 ng/L, respectively. The highest concentration level of PFCs in the mainstream and tributaries in Nakdong River were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the PFCs levels in river and the PFCs levels decreased with downstream because of dilution effects.

Levels of Perfluorinated Compounds in Liquid Milk Products in Korea

  • Park, Na-youn;Kho, Younglim;Kim, Junghoan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.310-315
    • /
    • 2021
  • This study was carried out to monitor the level of 17 perfluorinated compounds (PFCs) present in liquid milk products sold on the Korean market. The liquid milk samples were extracted via liquid-liquid extraction and analyzed by LC-MS/MS. Excellent linearity over the calibration range (r2>0.99), and the limit of quantification of perfluorooctane sulfonate (PFOS) was 0.021 ng/g, and perfluorotetradecanoic acid (PFOA) was 0.057 ng/g. The accuracy was in the range of 72.5-115.3%, and the precision was under 20%. The preprocessing method for this experiment is considered appropriate for analysis of milk samples. The proposed analytical method was applied for the determination of PFCs in 98 liquid milk product samples, and the average content of total PFCs was 0.6576 ng/mL. PFOA and PFOS were detected in most samples, and their levels were less than 0.1 ng/mL, which was lower than those in other studies.

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Won-Woong;Lee, Sun-Young;Yu, Se Mi;Hong, Jongki
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3727-3734
    • /
    • 2012
  • An analytical method has been developed for the rapid determination of perfluorinated compounds (PFCs) in human serum samples. The extraction and purification of PFCs from human serum were performed by the modified method of previous report. Ten PFCs were rapidly separated within 3.3 min by C18-monolithic column liquid chromatography (LC) and detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in negative ion mode. The runtime of PFCs on monolithic column LC was up to 4-fold faster than that on conventional column LC. The effect of triethylamine (TEA) to the mobile phase has investigated on the overall MS detection sensitivity of PFCs in ESI ionization. Quantification was performed by LC-MS/MS in multiple-ion reaction monitoring (MRM) mode, using $^{13}C$-labeled internal standards. Method validation was performed to determine recovery, linearity, precision, and limits of quantification, followed by, the analysis of a standard reference material (SRM 1957 from NIST). The overall recoveries ranged between 81.5 and 106.3% with RSDs of 3.4 to 16.2% for the entire procedure. The calibration range extended from 0.33 to 50 $ng\;mL^{-1}$, with a correlation coefficient ($R^2$) greater than 0.995 and the limits of quantification with 0.08 to 0.46 $ng\;mL^{-1}$. This approach can be used for rapid and sensitive quantitative analysis of 10 PFCs in human serum with high performance and accuracy.

Chemical Structural Approach to Understand Global Prohibition on Perfluorinated Compounds and their Uses (과불화합물의 규제 및 산업적 용도에 대한 화학구조적 고찰)

  • Choe, Eun Kyung;Ra, Jinsung;Cho, Young Dal;Song, Ki Bong;Lee, Suyeong;Seok, Gwangseol
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.134-155
    • /
    • 2016
  • Perfluorinated chemicals are highly diverse and widely used. More than 160 substances are pre-registered under REACH and approximately 140 substances are in the existing chemicals list of Korea from this chemical group. Chemical structures of PFCs that are globally prohibited and still in uses are identified with OECD's classification of PFCs with an overall review on their uses in consumer products including textile products. Case examples for current domestic situation on use of PFCs as a major component of water-repelling agents in textile products as well as a brief summary of eight major PFC manufacturers' situation are presented from our survey study along the supply chains and the most recent report of EPA stewardship programme, respectively.

Quantitative Determination of PFOA and PFOS in the Effluent of Sewage Treatment Plants and in Han River (서울시 하수처리장 방류수 및 한강 내 PFOA와 PFOS의 과불화화합물 모니터링 연구)

  • Shin, Mi-Yeon;Im, Jong-Kwon;Kho, Young-Lim;Choi, Kyoung-Sik;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.334-342
    • /
    • 2009
  • Perfluorinated compounds (PFCs) have a wide range of domestic and industrial applications, but they are persistent in the environment. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) are among the metabolites of PFCs and occur at high concentration in the environment. Korea is the largest importer of PFC compounds in the world, therefore, the accumulation of these compounds is possible. In this study, the concentrations of PFOS and PFOA were determined in water samples taken from sewage treatment plants (STPs) and the Han River in Seoul, Korea. After extraction with a HLB cartridge, PFCs in the samples were analyzed by HPLC with an ion trap mass spectrometry in electrospray negative mode. Limits of detection was between 1 and 1.6 ng/l. The result showed that the concentrations of PFOS and PFOA in effluent and influent of the four STPs in Seoul were 60~570 ng/l, and not detected (nd)~254 ng/l, respectively. The levels of PFOS and PFOA were higher in the effluents which passed through the treatment process than in influent water samples which was against expectation. The concentration of PFOA and PFOS in the Han River was 60~570 ng/l and nd~254 ng/l, respectively. PFOA was detected in every sample, but PFOS was only detected in the downstreams of the Han River. This result indicates that there is comprehensive contamination of PFCs in the aquatic environment in Korea.