• Title/Summary/Keyword: Per2 gene

Search Result 388, Processing Time 0.025 seconds

Investigation of gene-gene interactions of clock genes for chronotype in a healthy Korean population

  • Park, Mira;Kim, Soon Ae;Shin, Jieun;Joo, Eun-Jeong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.38.1-38.9
    • /
    • 2020
  • Chronotype is an important moderator of psychiatric illnesses, which seems to be controlled in some part by genetic factors. Clock genes are the most relevant genes for chronotype. In addition to the roles of individual genes, gene-gene interactions of clock genes substantially contribute to chronotype. We investigated genetic associations and gene-gene interactions of the clock genes BHLHB2, CLOCK, CSNK1E, NR1D1, PER1, PER2, PER3, and TIMELESS for chronotype in 1,293 healthy Korean individuals. Regression analysis was conducted to find associations between single nucleotide polymorphism (SNP) and chronotype. For gene-gene interaction analyses, the quantitative multifactor dimensionality reduction (QMDR) method, a nonparametric model-free method for quantitative phenotypes, were performed. No individual SNP or haplotype showed a significant association with chronotype by both regression analysis and single-locus model of QMDR. QMDR analysis identified NR1D1 rs2314339 and TIMELESS rs4630333 as the best SNP pairs among two-locus interaction models associated with chronotype (cross-validation consistency [CVC] = 8/10, p = 0.041). For the three-locus interaction model, the SNP combination of NR1D1 rs2314339, TIMELESS rs4630333, and PER3 rs228669 showed the best results (CVC = 4/10, p < 0.001). However, because the mean differences between genotype combinations were minor, the clinical roles of clock gene interactions are unlikely to be critical.

Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2

  • Kim, Mikyung;Pena, June Bryan de la;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.358-367
    • /
    • 2018
  • Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.

Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior

  • Sayson, Leandro Val;Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James Perez;Lee, Hyun Jun;Ortiz, Darlene Mae;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.238-245
    • /
    • 2022
  • Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.

Multidrug-Resistant Providencia Isolates Carrying $bla_{PER-1},\;bla_{VIM-2}$, and armA

  • Lee, Hee-Woo;Kang, Hee-Young;Shin, Kyeong-Seob;Kim, Jung-Min
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.272-274
    • /
    • 2007
  • During May to July 2004, three strains of Providencia spp. with multidrug-resistance (MDR) were isolated from urinary specimen of three patients hospitalized with a same hospital room. By PCR analysis, all three strains have been found to carry both VIM-2 type $metallo-{\beta}-lactamase$ gene and PER-1 type extended spectrum ${\beta}-lactamase$ gene. One out of three strains carried additional resistance gene, armA, 16S rRNA methylase gene responsible for high level resistance to aminoglycosides. To our knowledge, this is the first report on the identification of Providencia spp. simultaneously carrying $bla_{VIM-2},\;bla_{PER-1}$, and armA genes.

Molecular Mechanism of Photic-Entrainment of Chicken Pineal Circadian Clock

  • Okano, Toshiyuki;Fukada, Yoshitaka
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.25-28
    • /
    • 2002
  • The chicken pineal gland has been used for studies on the circadian clock, because it retains an intracellular phototransduction pathway regulating the phase of the intrinsic clock oscillator. Previously, we identified chicken clock genes expressed in the gland (cPer2, cPer3, cBmal1, cBmal2, cCry1, cCry2, and cClock), and showed that a cBMALl/2-cCLOCK heteromer acts as a regulator transactivating cPer2 gene through the CACGTG E-box element found in its promoter. Notably, mRNA expression of cPer2 gene is up-regulated by light as well as is driven by the circadian clock, implying that light-dependent clock resetting may involve the up-regulation of cPer2 gene. To explore the mechanism of light-dependent gene expression unidentified in animals, we first focused on pinopsin gene whose mRNA level is also up-regulated by light. A pinopsin promoter was isolated and analyzed by transcriptional assays using cultured chicken pineal cells, resulting in identification of an 18-bp light-responsive element that includes a CACGTG E-box sequence. We also investigated a role of mitogen-activated protein kinase (MAPK) in the clock resetting, especially in the E-box-dependent transcriptional regulation, because MAPK is phospholylated (activated) in a circadian manner and is rapidly dephosphorylated by light in the gland. Both pulldown analysis and kinase assay revealed that MAPK directly associates with BMAL1 to phosphorylate it at several Ser/Thr residues. Transcriptional analyses implied that the MAPK-mediated phosphorylation may negatively regulate the BMAL-CLOCK-dependent transactivation through the E-box. These results suggest that the CACGTG E-box serves not only as a clock-controlled element but also as a light-responsive element.

  • PDF

Genetic Studies of Oenothera odorata Populations in Korea Based on Isozyme Analysis

  • Huh, Hong-Wook
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 1996
  • The genetic variation in Korean evening primorse (Oeothera odorata L.) populations was examiend to estimate the level of allozyme variation within populatons using starch gel electrophoresis. 7 of 13 loci (Adh, Est-1, Est-2, Mdh-2, Pgd-2, Pgm-1, and Idh) revealed (Ps=43.2%) were polymorphic. The mean number of alleles per locus (A) and polymorphic locus (Ap) for populations were 1.64 and 2.46, respectively. The effective number of alleles (Aep) within populations relatively was low ranging from 1.08 to 1.22 with a mean of 1.14. Within populations, the mean number of allele per polymorphic loci (Ap) was 2.46, the mean number of alleles per locus (A) was 1.64, and the mean genetic diversity was 0.093. About 2.7% of the total allozyme diversity resided among populations (Mean GST=0.0274). FIS, a measure of the deviation from random mating within 13 populations, was relative low (mean FIS=0.03636). The indirect estimate of gene flow, based on the mean GST, was high (Nm=8.88). Estimates of gene flow were consistent with low levels of genetic differentiation among populations.

  • PDF

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

Genetic Analysis of Six Panicle Characters in Rice (수도의 수당구성요소의 유전분석)

  • 김주현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.208-214
    • /
    • 1987
  • A genetic study on the panicle characters in Oryza sativa was carried out by means of a 5 x 5 diallel cross. The five parental varieties were Raekyung, Yeongnamjosaeng, Nongbaek, Yushin and Honenwase. All characters were correlated positively each other, except number of kernels per primary branch. The number of secondary branches per primary branch.was the most effective factor in determining the number of kernels per panicle, the next being the number of primary branches per panicle. Regression analyses of the data of Vr/Wr indicated the presence of non-allelic gene interactions for all characters. Overdominant characters were the number of kernels per panicle, the number of primary branches per panicle, the number of secondary branches per primary branch, the number of kernels per primary branch and sum of kernels on all the tertiary branches per panicle, suggesting that the characters were more influenced by dominant effect than additive effect. However, the number of kernels per secondary branch was partially dominant where the genetic variation was due more to additive effect than to dominance effect. But after omitting the parent which had non-allelic interaction gene, the characters; the number of kernels per panicle, the number of secondary branches per primary branch, and the number of kernels per secondary branch, were partially dominant. Narrow sense heritabilities(h$^2$ N) in number of kernels per panicle and number of secondary branches were high and moderate, respectively, but those of the rest were lower. Mean squares of GCA and SCA of all characters, except SCA of the number of kernels per secondary branch, were highly significant. Effects of GCA were larger than SCA effects in all characters. Raekyung, Yushin and Nongbaek had highly positive GCA, and the best positive SCA was observed in crosses of Nongbaek x Tongillines (Raekyung, Yushin, and Yeongnamjosaeng) in all characters.

  • PDF

Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine

  • Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James;Lee, Hyun Jun;Sayson, Leandro Val;Ortiz, Darlene Mae D.;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • Drug addiction influences most communities directly or indirectly. Increasing studies have reported the relationship between circadian-related genes and drug addiction. Per2 disrupted mice exhibited more vulnerable behavioral responses against some drugs including methamphetamine (METH). However, its roles and mechanisms are still not clear. Transcriptional profiling analysis in Per2 knockout (KO) mice may provide a valuable tool to identify potential genetic involvement and pathways in enhanced behavioral responses against drugs. To explore the potential genetic involvement, we examined common differentially expressed genes (DEGs) in the striatum of drug naïve Per2 KO/wild-type (WT) mice, and before/after METH treatment in Per2 KO mice, but not in WT mice. We selected 9 common DEGs (Ncald, Cpa6, Pklr, Ttc29, Cbr2, Egr2, Prg4, Lcn2, and Camsap2) based on literature research. Among the common DEGs, Ncald, Cpa6, Pklr, and Ttc29 showed higher expression levels in drug naïve Per2 KO mice than in WT mice, while they were downregulated in Per2 KO mice after METH treatment. In contrast, Cbr2, Egr2, Prg4, Lcn2, and Camsap2 exhibited lower expression levels in drug naïve Per2 KO mice than in WT mice, while they were upregulated after METH treatment in Per2 KO mice. qRT-PCR analyses validated the expression patterns of 9 target genes before/after METH treatment in Per2 KO and WT mice. Although further research is required to deeply understand the relationship and roles of the 9 target genes in drug addiction, the findings from the present study indicate that the target genes might play important roles in drug addiction.

Gene Gun-Mediated Human Erythropoietin Gene Expression in Primary Cultured Oviduct Cells from Laying Hens

  • Ochiai, H.;Park, H.M.;Sasaki, R.;Okumura, J.;Muramatsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 1999
  • Factors affecting gene gun-mediated expression of the human erythropoietin gene were investigated in primary cultured oviduct cells from laying hens. The human erythropoietin gene was transfected by a gene gun method at $1.25{\mu}g$ per dish, and cultured in a synthetic serum-free medium for 72 hrs. The concentration of human erythropoietin mRNA was determined by RNA : RNA solution hybridization. In experiment 1, the effect of changing the shooting pressure of DNA-coated microparticles with nitrogen gas was tested at 20 and $60kgf/cm^2$. The results showed that the erythropoietin mRNA concentration was significantly higher at 60 than $20kgf/cm^2$. In experiment 2, the effects of supplementing the medium with fetal calf serum at 10%, and raising the shooting pressure from 60 to $80kgf/cm^2$ on the cell number and erythropoietin gene expression were examined. Although supplementation with fetal calf serum significantly increased the cell numbes compared with no supplemented controls (p < 0.05), erythropoietin mRNA concentration per $10^3$ cells was not affected. Raising the shooting pressure from 60 to $80kgf/cm^2$ did not affect either of the parameters, In experiment 3, the effect of supplementing ascorbate 2-phosphate at 0.5 mM was tested. The results indicated that the ascorbate supplementation significantly increased the cell number (p < 0.05), and tended to increase erythropoietin mRNA concentration (p < 0.1). Thus, for human erythropoietin gene expression by using the gene gun method, shooting pressure with nitrogen gas should be sufficient at $60kgf/cm^2$ and supplementation with ascorbate phosphate would be useful to enhance not only the cell proliferation but also erythropoietin gene expression.