Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.131

Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2  

Kim, Mikyung (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University)
Pena, June Bryan de la (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University)
Cheong, Jae Hoon (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University)
Kim, Hee Jin (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University)
Publication Information
Biomolecules & Therapeutics / v.26, no.4, 2018 , pp. 358-367 More about this Journal
Abstract
Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.
Keywords
Circadian rhythm; Per2 gene; Sleep; Depression; Addiction; Neurotransmitter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brager, A., Prosser, R. A. and Glass, J. D. (2011a) Acamprosate-responsive brain sites for suppression of ethanol intake and preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1032-R1043.   DOI
2 Brager, A., Prosser, R. A. and Glass, J. D. (2011b) Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice. Chronobiol. Int. 28, 664-672.   DOI
3 Brager, A., Stowie, A. C., Prosser, R. A. and Glass, J. D. (2013) The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behav. Brain Res. 243, 255-260.   DOI
4 Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B. and Barker, R. A. (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589-595.   DOI
5 Brown, S. A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M. and Schibler, U. (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696.   DOI
6 Bussi, I. L., Levin, G., Golombek, D. A. and Agostino, P. V. (2014) Involvement of dopamine signaling in the circadian modulation of interval timing. Eur. J. Neurosci. 40, 2299-2310.   DOI
7 Caldelas, I., Challet, E., Saboureau, M. and Pevet, P. (2005) Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of per expression in the hamster suprachiasmatic nucleus. J. Mol. Neurosci. 25, 53-63.   DOI
8 Castaneda, T. R., Prado, B. M., Prieto, D. and Mora, F. (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J. Pineal Res. 36, 177-185.   DOI
9 Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. (2010) PER2 controls lipid metabolism by direct regulation of $PPAR{\gamma}$. Cell Metab. 12, 509-520.   DOI
10 Gravotta, L., Gavrila, A. M., Hood, S. and Amir, S. (2011) Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J. Mol. Neurosci. 45, 162-171.   DOI
11 Guo, H., Brewer, J. M., Lehman, M. N. and Bittman, E. L. (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26, 6406-6412.   DOI
12 Hampp, G. and Albrecht, U. (2008) The circadian clock and mood-related behavior. Commun. Integr. Biol. 1, 1-3.   DOI
13 Hampp, G., Ripperger, J. A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J. H. and Albrecht, U. (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678-683.   DOI
14 Mendoza, J., Clesse, D., Pevet, P. and Challet, E. (2008) Serotonergic potentiation of dark pulse-induced phase-shifting effects at midday in hamsters. J. Neurochem. 106, 1404-1414.   DOI
15 Hinton, D. J. (2016) Preclinical and clinical implications of adenosine and glutamate signaling in alcohol use disorder. Dissertation. College of Medicine-Mayo Clinic, Minnesota.
16 Hirota, T. and Kay, S. A. (2009) High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem. Biol. 16, 921-927.   DOI
17 Hood, S., Cassidy, P., Cossette, M. P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J. and Amir, S. (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30, 14046-14058.   DOI
18 McClung, C. A. and Nestler, E. J. (2003) Regulation of gene expression and cocaine reward by CREB and ${\Delta}FosB$. Nat. Neurosci. 6, 1209-1215.
19 Mendoza, J., Albrecht, U. and Challet, E. (2010) Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav. 9, 467-477.
20 Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K. and Yanagisawa, M. (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. U.S.A. 103, 12150-12155.   DOI
21 Mignot, E. and Takahashi, J. S. (2007) A circadian sleep disorder reveals a complex clock. Cell 128, 22-23.   DOI
22 Mistlberger, R. E. (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18, 171-195.   DOI
23 Soria, V., Martinez-Amoros, E., Escaramis, G., Valero, J., Perez-Egea, R., Garcia, C., Gutierrez-Zotes, A., Puigdemont, D., Bayes, M., Crespo, J. M., Martorell, L., Vilella, E., Labad, A., Vallejo, J., Perez, V., Menchon, J. M., Estivill, X., Gratacos, M. and Urretavizcaya, M. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35, 1279-1289.   DOI
24 Miyazaki, K., Wakabayashi, M., Chikahisa, S., Sei, H. and Ishida, N. (2007) PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus. Genes Cells 12, 1225-1234.   DOI
25 Mohawk, J. A., Green, C. B. and Takahashi, J. S. (2012) Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462.   DOI
26 Moriya, T., Horikawa, K., Akiyama, M. and Shibata, S. (2000) Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol. Pharmacol. 58, 1554-1562.   DOI
27 Solt, L. A., Wang, Y., Banerjee, S., Hughes, T., Kojetin, D. J., Lundasen, T., Shin, Y., Liu, J., Cameron, M. D., Noel, R., Yoo, S. H., Takahashi, J. S., Butler, A. A., Kamenecka, T. M. and Burris, T. P. (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68.   DOI
28 Song, H., Moon, M., Choe, H. K., Han, D. H., Jang, C., Kim, A., Cho, S., Kim, K. and Mook-Jung, I. (2015) $A{\beta}$-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease. Mol. Neurodegener. 10, 13.   DOI
29 Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., Lascorz, J., Depner, M., Holzberg, D., Soyka, M., Schreiber, S., Matsuda, F., Lathrop, M., Schumann, G. and Albrecht, U. (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35-42.   DOI
30 Straub, R. H. and Cutolo, M. (2007) Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 56, 399-408.   DOI
31 Varcoe, T. J. (2008) The role of serotonin-2C receptors in the rat circadian system. Dissertation. School of Paediatrics and Reproductive Health, South Australia.
32 Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Ptacek, L. J. and Fu, Y. H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040-1043.   DOI
33 Turek, F. W. (2007) From circadian rhythms to clock genes in depression. Int. Clin. Psychopharmacol. 22, S1-S8.
34 Challet, E. (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648-5655.   DOI
35 Chun, S. K., Jang, J., Chung, S., Yun, H., Kim, N. J., Jung, J. W., Son, G. H., Suh, Y. G. and Kim, K. (2014) Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem. Biol. 9, 703-710.   DOI
36 Sujino, M., Nagano, M., Fujioka, A., Shigeyoshi, Y. and Inouye, S. (2007) Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues. Eur. J. Neurosci. 26, 2731-2738.   DOI
37 Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011.   DOI
38 United Nations Office on Drugs and Crime (2016) World drug report. United Nations Publications.
39 Uz, T., Ahmed, R., Akhisaroglu, M., Kurtuncu, M., Imbesi, M., Arslan, A. D. and Manev, A. D. (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134, 1309-1316.   DOI
40 Vanselow, K., Vanselow, J. T., Westermark, P. O., Reischl, S., Maier, B., Korte, T., Herrmann, A., Herzel, H., Schlosser, A. and Kramer, A. (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 20, 2660-2672.   DOI
41 Verwey, M., Khoja, Z., Stewart, J. and Amir, S. (2007) Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147, 277-285.   DOI
42 Wakamatsu, H., Yoshinobu, Y., Aida, R., Moriya, T., Akiyama, M. and Shibata, S. (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13, 1190-1196.   DOI
43 Curie, T., Maret, S., Emmenegger, Y. and Franken, P. (2015) In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. Sleep 38, 1381-1394.   DOI
44 Chung, S., Lee, E. J., Yun, S., Choe, H. K., Park, S. B., Son, H. J., Kim, K. S., Dluzen, D. E., Lee, I., Hwang, O., Son, G. H. and Kim, K. (2014) Impact of circadian nuclear receptor REV-$ERB{\alpha}$ on midbrain dopamine production and mood regulation. Cell 157, 858-868.   DOI
45 Comasco, E., Nordquist, N., Gokturk, C., Aslund, C., Hallman, J., Oreland, L. and Nilsson, K. W. (2010) The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups. J. Med. Sci. 115, 41-48.   DOI
46 Cuesta, M., Clesse, D., Pevet, P. and Challet, E. (2009) New light on the serotonergic paradox in the rat circadian system. J. Neurochem. 110, 231-243.   DOI
47 Curie, T., Mongrain, V., Dorsaz, S., Mang, G. M., Emmenegger, Y. and Franken, P. (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311-323.   DOI
48 Cermakian, N., Lamont, E. W., Boudreau, P. and Boivin, D. B. (2011) Circadian clock gene expression in brain regions of Alzheimer's disease patients and control subjects. J. Biol. Rhythms 26, 160-170.   DOI
49 Jiang, W. G., Li, S. X., Zhou, S. J., Sun, Y., Shi, J. and Lu, L., (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 1399, 25-32.   DOI
50 Horikawa, K., Yokota, S., Fuji, K., Akiyama, M., Moriya, T., Okamura, H. and Shibata, S. (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867-5873.   DOI
51 Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J. and Reppert, S. M. (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68.   DOI
52 Kondratov, R. V., Chernov, M. V., Kondratova, A. A., Gorbacheva, V. Y., Gudkov, A. V. and Antoch, M. P. (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932.   DOI
53 Johansson, C., Willeit, M., Smedh, C., Ekholm, J., Paunio, T., Kieseppa, T., Lichtermann, D., Praschak-Rieder, N., Neumeister, A., Nilsson, L. G., Kasper, S., Peltonen, L., Adolfsson, R., Schalling, M. and Partonen, T. (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28, 734-739.   DOI
54 Kalsbeek, A., Foppen, E.,Schalij, I., Van Heijningen, C., van der Vliet, J., Fliers, E. and Buijs, R. M. (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3, e3194.   DOI
55 Ko, C. H. and Takahashi, J. S. (2006) Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271-R277.   DOI
56 Konopka, R. J. and Benzer, S. (1971) Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68, 2112-2116.   DOI
57 Partonen, T., Treutlein, J., Alpman, A., Frank, J., Johansson, C., Depner, M., Aron, L., Rietschel, M., Wellek, S., Soronen, P., Paunio, T., Koch, A., Chen, P., Lathrop, M., Adolfsson, R., Persson, M. L., Kasper, S., Schalling, M., Peltonen, L. and Schumann, G. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med. 39, 229-238.   DOI
58 Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F. and Schibler, U. (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705.   DOI
59 Nielsen, H., Hannibal, J., Knudsen, S. and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433-441.   DOI
60 Novak, C. M., Ehlen, J. C., Paul, K. N., Fukuhara, C. and Albers, H. E. (2006) Light and $GABA_A$ receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur. J. Neurosci. 24, 2843-2852.   DOI
61 Paul, K. N., Fukuhara, C., Karom, M., Tosini, G. and Albers, H. E. (2005) AMPA/kainate receptor antagonist DNQX blocks the acute increase of Per2 mRNA levels in most but not all areas of the SCN. Brain Res. Mol. Brain Res. 139, 129-136.   DOI
62 Pendergast, J. S., Oda, G. A., Niswender, K. D. and Yamazaki, S. (2012) Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s). Proc. Natl. Acad. Sci. U.S.A. 109, 14218-14223.   DOI
63 Albrecht, U. (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246-260.   DOI
64 Abarca, C., Albrecht, U. and Spanagel, R. (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. U.S.A. 99, 9026-9030.   DOI
65 Agostino, P. and Cheng, R. (2016) Contributions of dopaminergic signaling to timing accuracy and precision. Curr. Opin. Behav. Sci. 8, 153-160.   DOI
66 Akhisaroglu, M., Kurtuncu, M., Manev, H. and Uz, T. (2005) Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol. Biochem. Behav. 80, 371-377.   DOI
67 Albrecht, U., Sun, Z., Eichele, G. and Lee, C. (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064.   DOI
68 Albrecht, U., Zheng, B., Larkin, D., Sun, Z. and Lee, C. (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100-104.   DOI
69 Amir, S. and Stewart, J. (2009) Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 65, 829-834.   DOI
70 Andretic, R. and Hirsh, J. (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 97, 1873-1878.   DOI
71 Xu, Y., Toh, K., Jones, C. R., Shin, J. Y., Fu, Y. H. and Ptacek, L. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59-70.   DOI
72 Welsh, D. K., Takahashi, J. S. and Kay, S. A. (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577.   DOI
73 Witting, W., Kwa, I. H., Eikelenboom, P., Mirmiran, M. and Swaab, D. F. (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol. Psychiatry 27, 563-572.   DOI
74 Wulff, K., Gatti, S., Wettstein, J. G. and Foster, R. G. (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11, 589-599.
75 Yamamoto, H., Imai, K., Takamatsu, Y., Kamegaya, E., Kishida, M., Hagino, Y., Hara, Y., Shimada, K., Yamamoto, T., Sora, I., Koga, H. and Ikeda, K. (2005) Methamphetamine modulation of gene expression in the brain: analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Brain Res. Mol. Brain Res. 137, 40-46.   DOI
76 Yelamanchili, S. V., Pendyala, G., Brunk, I., Darna, M., Albrecht, U. and Ahnert-Hilger, G. (2006) Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J. Biol. Chem. 281, 15671-15679.   DOI
77 Yesavage, J. A., Noda, A., Hernandez, B., Friedman, L., Cheng, J. J., Tinklenberg, J. R., Hallmayer, J., O'hara, R., David, R., Robert, P., Landsverk, E. and Zeitzer, J. M. (2011) Circadian clock gene polymorphisms and sleep-wake disturbance in Alzheimer disease. Am. J. Geriatr. Psychiatry 19, 635-643.   DOI
78 DeWoskin, D., Myung, J., Belle, M. D., Piggins, H. D., Takumi, T. and Forger, D. B. (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc. Natl. Acad. Sci. U.S.A. 112, E3911-E3919.   DOI
79 dela Pena, I., Lee, J. C., Lee, H. L. Woo, T. S., Lee, H. C., Sohn, A. R. and Cheong, J. H. (2012a) Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: lack of a rewarding effect of repeated methylphenidate treatment. Neurosci. Lett. 514, 189-193.   DOI
80 dela Pena, I., Yoon, S. Y., Lee, J. C., dela Pena, J. B., Sohn, A. R., Ryu, J. H., Shin, C. Y. and Cheong, J. H. (2012b) Methylphenidate treatment in the spontaneously hypertensive rat: influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats. Psychopharmacology (Berl.) 221, 217-226.   DOI
81 Duncan, M. J., Smith, J. T., Franklin, K. M., Beckett, T. L., Murphy, M. P., St Clair, D. K., Donohue, K. D., Striz, M. and O'hara, B. F. (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp. Neurol. 236, 249-258.   DOI
82 Ebisawa, T. (2007) Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J. Pharmacol. Sci. 103, 150-154.   DOI
83 Ehlen, J. C., Novak, C. M., Karom, M. C., Gamble, K. L., Paul, K. N. and Albers, H. E. (2006) $GABA_A$ receptor activation suppresses Period 1 mRNA and Period 2 mRNA in the suprachiasmatic nucleus during the mid-subjective day. Eur. J. Neurosci. 23, 3328-3336.   DOI
84 Lamont, E. W., Diaz, L. R., Barry-Shaw, J., Stewart, J. and Amir, S. (2005) Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience 132, 245-248.   DOI
85 Kopp, C., Albrecht, U., Zheng, B. and Tobler, I. (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16, 1099-1106.   DOI
86 Kudo, T., Loh, D. H., Truong, D., Wu, Y. and Colwell, C. S. (2011a) Circadian dysfunction in a mouse model of Parkinson's disease. Exp. Neurol. 232, 66-75.   DOI
87 dela Pena, I., de la Pena, J. B., Kim, B. N., Han, D. H., Noh, M. and Cheong, J. H. (2015) Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch. Pharm. Res. 38, 865-875.   DOI
88 Kudo, T., Schroeder, A., Loh, D. H., Kuljis, D., Jordan, M. C., Roos, K. P. and Colwell, C. S. (2011b) Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Exp. Neurol. 228, 80-90.   DOI
89 Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H. and Reppert, S. M. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205.   DOI
90 Kwon, I., Lee, J., Chang, S. H., Jung, N. C., Lee, B. J., Son, G. H., Kim, K. and Lee, K. H. (2006) BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26, 7318-7330.   DOI
91 Lavebratt, C., Sjoholm, L. K., Partonen, T., Schalling, M. and Forsell, Y. (2010) PER2 variantion is associated with depression vulnerability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 570-581.   DOI
92 Lee, C., Weaver, D. R. and Reppert, S. M. (2004) Direct association between mouse PERIOD and $CKI{\varepsilon}$ is critical for a functioning circadian clock. Mol.Cell.Biol. 24, 584-594.   DOI
93 Quay, W. (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473-479.   DOI
94 Pereira, P. A., Alvim-Soares, A., Bicalho, M. A., Moraes, E. N., Malloy-Diniz, L., Paula, J. J., Romano-Silva, M. A. and Miranda, D. M. (2016) Lack of association between genetic polymorphism of circadian genes (PER2, PER3, CLOCK and OX2R) with late onset depression and alzheimer's disease in a sample of a Brazilian population (circadian genes, late-onset depression and Alzheimer's disease). Curr. Alzheimer Res. 13, 1397-1406.   DOI
95 Perreau-Lenz, S., Sanchis-Segura, C., Leonardi-Essmann, F., Schneider, M. and Spanagel, R. (2010) Development of morphine-induced tolerance and withdrawal: involvement of the clock gene mPer2. Eur. Neuropsychopharmacol. 20, 509-517.   DOI
96 Phillips, K. (2004) Serotonin's circadian rhythm. J. Exp. Biol. 207, i-ii.
97 Ralph, M. R. and Menaker, M. (1989) GABA regulation of circadian responses to light. I. Involvement of $GABA_A$-benzodiazepine and $GABA_B$ receptors. J. Neurosci. 9, 2858-2865.   DOI
98 Reick, M., Garcia, J. A., Dudley, C. and McKnight, S. L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506-509.   DOI
99 Ripperger, J. A. and Albrecht, U. (2012) The circadian clock component PERIOD2: from molecular to cerebral functions. Prog. Brain Res. 199, 233-245.
100 Ripperger, J. A., Jud, C. and Albrecht, U. (2011) The daily rhythm of mice. FEBS Lett. 585, 1384-1392.   DOI
101 Ruan, G. X., Allen, G. C., Yamazaki, S. and McMahon, D. G. (2008) An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 6, e249.   DOI
102 Bae, K. and Weaver, D. R. (2003) Light-induced phase shifts in mice lacking mPER1 or mPER2. J. Biol. Rhythms 18, 123-133.   DOI
103 Arjona, A. and Sarkar, D. (2006) Short communication: The circadian gene mPer2 regulates the daily rhythm of IFN-${\gamma}$. J. Interferon Cytokine Res. 26, 645-649.   DOI
104 Aton, S. J., Huettner, J. E., Straume, M. and Herzog, E. D. (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc. Natl. Acad. Sci. U.S.A. 103, 19188-19193.   DOI
105 Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M. and Weaver, D. R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525-536.   DOI
106 Baird, A., Coogan, A., Siddiqui, A., Donev, R. and Thome, J. (2012) Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol. Psychiatry 17, 988-995.   DOI
107 Beaule, C., Swanstrom, A., Leone, M. and Herzog, E. D. (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS ONE 4, e7476.   DOI
108 Bellet, M. M., Vawter, M. P., Bunney, B. G., Bunney, W. E. and Sassone-Corsi, P. (2011) Ketamine influences CLOCK: BMAL1 function leading to altered circadian gene expression. PLoS ONE 6, e23982.   DOI
109 Blomeyer, D., Buchmann, A. F., Lascorz, J., Zimmermann, U. S., Esser, G., Desrivieres, S., Schmidt, M. H., Banaschewski, T., Schumann, G. and Laucht, M. (2013) Association of PER2 genotype and stressful life events with alcohol drinking in young adults. PLoS ONE 8, e59136.   DOI
110 Besharse, J. C., Zhuang, M., Freeman, K. and Fogerty, J. (2004) Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock. Eur. J. Neurosci. 20, 167-174.   DOI
111 Yokota, S., Horikawa, K., Akiyama, M., Moriya, T., Ebihara, S., Komuro, G., Ohta, T. and Shibata, S. (2000) Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br. J. Pharmacol. 131, 1739-1747.   DOI
112 Yuferov, V., Kroslak, T., Laforge, K. S., Zhou, Y., Ho, A. and Kreek, M. J. (2003) Differential gene expression in the rat caudate putamen after "binge" cocaine administration: advantage of triplicate microarray analysis. Synapse 48, 157-169.   DOI
113 Zhang, B., Gao, Y., Li, Y., Yang, J. and Zhao, H. (2016) Sleep deprivation influences circadian gene expression in the lateral habenula. Behav. Neurol. 2016, 7919534.
114 Zhang, L., Ptacek, L. J. and Fu, Y. H. (2013) Diversity of human clock genotypes and consequences. Prog. Mol. Biol. Transl. Sci. 119, 51-81.
115 Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M.,Eichele, G., Lee, C. C. and Bradley, A. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169-173.   DOI
116 Zunszain, P., Horowitz, M.,Cattaneo, A., Lupi, M. and Pariante, C. (2013) Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties. Mol. Psychiatry 18, 1236-1241.   DOI
117 Gallardo, C. M., Darvas, M., Oviatt, M., Chang, C. H., Michalik, M., Huddy, T. F., Meyer, E. E., Shuster, S. A., Aguayo, A., Hill, E. M., Kiani, K., Ikpeazu, J., Martinez, J. S., Purpura, M., Smit, A. N., Patton, D. F., Mistlberger, R. E., Palmiter, R. D. and Steele, A. D. (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife 3, e03781.
118 Eide, E. J., Woolf, M. F., Kang, H., Woolf, P., Hurst, W., Camacho, F., Vielhaber, E. L., Giovanni, A. and Virshup, D. M. (2005) Control of mammalian circadian rhythm by $CKI{\varepsilon}$-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795-2807.   DOI
119 Feillet, C. A., Ripperger, J. A., Magnone, M. C., Dulloo, A., Albrecht, U. and Challet, E. (2006) Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016-2022.   DOI
120 Franken, P., Thomason, R., Heller, H. C. and O'Hara, B. F. (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci. 8, 87.   DOI
121 Gamsby, J., Templeton, E., Bonvini, L., Wang, W., Loros, J., Dunlap, J., Green, A. and Gulick, D. (2013) The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav. Brain Res. 249, 15-21.   DOI
122 Garmabi, B., Vousooghi, N., Vosough, M., Yoonessi, A., Bakhtazad, A. and Zarrindast, M. (2016) Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor. Neuroscience 322, 104-114.   DOI
123 Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S. and Weitz, C. J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569.   DOI
124 Lowrey, P. L. and Takahashi, J. S. (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441.   DOI
125 Lee, H., Chen, R., Kim, H., Etchegaray, J. P., Weaver, D. R. and Lee, C. (2011a) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U.S.A. 108, 16451-16456.   DOI
126 Lee, H. J., Kim, L., Kang, S. G., Yoon, H. K., Choi, J. E., Park, Y. M., Kim, S. J. and Kripke, D. F. (2011b) PER2 variation is associated with diurnal preference in a Korean young population. Behav. Genet. 41, 273-277.   DOI
127 Lesch, K. P. (2004) Gene-environment interaction and the genetics of depression. J. Psychiatry Neurosci. 29, 174-184.
128 Logan, R. W., Edgar, N., Gillman, A. G., Hoffman, D., Zhu, X. and Mc-Clung, C. A. (2015) Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol. Psychiatry 78, 249-258.   DOI
129 Loh, D. H., Kudo, T., Truong, D., Wu, Y. and Colwell, C. S. (2013) The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS ONE 8, e69993.   DOI
130 Matsuo, I., Iijima, N., Takumi, K., Higo, S., Aikawa, S., Anzai, M., Ishii, H., Sakamoto, A. and Ozawa, H. (2016) Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats. Neurosci. Res. 107, 30-37.   DOI
131 McClung, C. A. (2007a) Circadian genes, rhythms and the biology of mood disorders. Pharmacol. Ther. 114, 222-232.   DOI
132 McClung, C. A. (2007b) Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Scientific World Journal 7, 194-202.   DOI
133 Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. and Reppert, S. M. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019.   DOI
134 Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E. and Sassone-Corsi, P. (2010) Regulation of BMAL1 protein stability and circadian function by $GSK3{\beta}$-mediated phosphorylation. PLoS ONE 5, e8561.   DOI
135 Salamone, J. D., Correa, M., Mingote, S. and Weber, S. (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther. 305, 1-8.   DOI
136 Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. and Albrecht, U. (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345-357.   DOI
137 Shumay, E., Fowler, J., Wang, G., Logan, J., Alia-Klein, N., Goldstein, R., Maloney, T., Wong, C. and Volkow, N. (2012) Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl. Psychiatry 2, e86.   DOI
138 Simerly, R. (2006) Feeding signals and drugs meet in the midbrain. Nat. Med. 12, 1244-1246.   DOI
139 Sleipness, E. P., Sorg, B. A. and Jansen, H. T. (2007) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res. 1129, 34-42.   DOI
140 Snyder, S. H., Zweig, M., Axelrod, J. and Fischer, J. E. (1965) Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. Natl. Acad. Sci. U.S.A. 53, 301-305.   DOI