• Title/Summary/Keyword: Peptide mapping

Search Result 47, Processing Time 0.03 seconds

Site-Directed Mutagenesis of Two Cysteines (155, 202) in Catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24

  • Kim, Seung-Il;Kim, Soo-Jung;Leem, Sun-Hee;Oh, Kye-Heon;Kim, Soo-Hyun;Park, Young-Mok
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.172-175
    • /
    • 2001
  • Catechol 1,2-dioxygenase $I_1$ ($CDI_1$) is the first enzyme of the $\beta$-ketoadipate pathway in Acinetobacter lowffii K24. $CDI_1$ has two cysteines (155, 202) and its enzyme activity is inhibited by the cysteine inhibitor, $AgNO_3$. Two mutants, $CDI_1$ C155V and $CDI_1$ C202V, were obtained by site-directed mutagenesis. The two mutants were overexpressed and the mutated amino acid residues (Cys$\rightarrow$Val) were characterized by peptide mapping and amino acid sequencing. Interestingly, $CDI_1$ C155V was inhibited by $AgNO_3$, whereas $CDI_1$ C202V was not inhibited. This suggests that $Cys^{202}$ is the sole inhibition site by $AgNO_3$ and is close to the active site of the enzyme. However, the results of the biochemical assay of mutated $CDI_1s$ suggest that the two cysteines are not directly involved in the activity of the catechol 1,2-dioxygenase of $CDI_1$.

  • PDF

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.

Sustained Release of PLGylated G-CSF from PLGA Microsphere (PLGA 미립구로부터 PLGylated G-CSF의 서방성 방출)

  • 정경환;임형권;이시욱;강관엽;박태관
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.33-37
    • /
    • 2002
  • To improve in vitro release kinetic of G-CSF in PLGA microsphere, G-CSF was PEGylated with methoxy polyethylene glycol-aldehyde (mPEG-aldehyde, MW 5000). The majority of G-CSF was mono-PEGylated and it was characterized using SDS-PAGE, HPLC, and peptide mapping. The PLGA microencapsulation with the native, or PEGylated G-CSF was performed using W/O/w method, where the encapsulation efficiency was high. For the high loading of G-CSF to microsphere, G-CSF and PEGylated G-CSF were concentrated and then verified the protein stability using native gel and gel filtration chromatography. In comparison with native G-CSF, PEGylated G-CSF was released during the extended period and its maximum amount of released G-CSF was also increased.

Studies on standardization and characterization of recombinant interferon alia

  • Kim, Gi-Hyun;Shin , Won;Jung , Ja-Young;Park, Young-Ju;Joung , Jee-Won;Oh, Il-Ung;Jin, Jae-Ho;Kim, Seo-Mi;Jung , Sang-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.329.2-330
    • /
    • 2002
  • This study was intended to establish test methods equivalent to those of "Interferon alfa-2 concentrated solution" monograph in European Pharmacophoeia(EP). Two recombinant interferon alfa concentrated solutions manufactured in Korea were tested according to the monograph of EP. Tests of identification(biological activity. isoelectric focusing. SDS-PAGE under reducing condition, peptide mapping). related proteins. impurities of moducular masses differing from that of interferon alfa-2(SDS-PAGE under reducing and non-reducing condition). bacterial endotoxin, protein, potency, host-cell-derrved proteins. and host-cell-derived DNA were performed in the laboratories of manufacrues and division of biotechnology. KFDA. The results of this study showed that specitications of interfenon alfa concentrated solutions manufactured in Korea were within the aceptance criteria of EP. Based on the study. specitications and test methods for interferon alfa concentrated solution can be established according to the monograph of EP suggesting the revision of Minimum requirements for biological products

  • PDF

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Phosphorylation of 44-kilodalton Proteins in Peripheral T-lymphocyte of Rat (흰쥐 말초 혈액 림프구의 분자량 44 kD 단백의 인산화)

  • Ahn, Young-Soo;Jou, Il-O;Oh, Do-Yeun;Lim, Seung-Wook;Park, Kyung-Sun
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.135-144
    • /
    • 1991
  • Using T-lymphocytes obtained from rat peripheral blood, we found that the 44kD/pI6.8 protein was the major phosphoprotein of T-lymphocytes under basal condition, and that the 44kD/pI6.3 protein was a new phosphoprotein appeared in T-lymphocytes stimulated with ${\beta}-agonist$. The phosphorylation of the 44kD/pI6.3 protein was also induced by forskolin but inhibited by H-8 pretreatment. To clarify the character of the 44kD/pI6.3 protein, we used Con-A and kinase inhibitors, H-7 and W-7. Con-A stimulation induced phosphorylation of 44kD/pI 6.3 protein but that was inhibited by W-7 pretreatment. The phosphorytation of 44kD/pI6.3 protein was not induced by the PKC activator, PMA. Instead, the phosphorylation of 44kD/pI6.8 protein was reduced by H-7, a PKC inhibitor. From the above results,it can be concluded that the 44kD/pI6.3 protein can be a common substrate for A-kinase and CaM kinase. The two dimensional tryptic peptide mapping revealed that the 44kD/pI6.8 and 44kD/pI6.3 proteins are different.

  • PDF

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Purification and Characterization of Chitinase from a New Species Strain, Pseudomonas sp. TKU008

  • Wang, San-Lang;Lin, Bo-Shyun;Liang, Tzu-Wen;Wang, Chuan-Lu;Wu, Pei-Chen;Liu, Je-Ruei
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1001-1005
    • /
    • 2010
  • The chitinase-producing strain TKU008 was isolated from soil in Taiwan, and it was identified as a new species of Pseudomonas. The culture condition suitable for production of chitinase was found to be shaking at $30^{\circ}C$ for 4 days in 100 ml of medium containing 1% shrimp and crab shell powder, 0.1% $K_2HPO_4$, and 0.05% $MgSO_4{\cdot}7H_2O$ (pH 7). The TKU008 chitinase was suppressed by the simultaneously existing protease, which also showed the maximum activity at the fourth day of incubation. The molecular mass of the chitinase was estimated to be 40 kDa by SDS-PAGE. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitinase were pH 7, $50^{\circ}C$, pH 6-7, and <$50^{\circ}C$, respectively. The chitinase was completely inhibited by $Mn^{2+}$ and $Cu^{2+}$. The results of peptide mass mapping showed that 11 tryptic peptides of the chitinase were identical to the chitinase CW from Bacillus cereus (GenBank Accession No. gi 45827175) with a 32% sequence coverage.

Purification and Characterization of a New Fibrinolytic Enzyme of Bacillus licheniformis KJ-31, Isolated from Korean Traditional Jeot-gal

  • Hwang, Kyung-Ju;Choi, Kyoung-Hwa;Kim, Myo-Jeong;Park, Cheon-Seok;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1469-1476
    • /
    • 2007
  • Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and $40^{\circ}C$, with a chromogenic substrate for plasmin. It had high degrading activity for the $B{\beta}$-chain and $A{\alpha}$-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.