• Title/Summary/Keyword: Peptide inhibitor

Search Result 219, Processing Time 0.038 seconds

Production and Characterization of a New ${\alpha}$-Glucosidase Inhibitory Peptide from Aspergillus oryzae N159-1

  • Kang, Min-Gu;Yi, Sung-Hun;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.41 no.3
    • /
    • pp.149-154
    • /
    • 2013
  • An ${\alpha}$-glucosidase inhibitor was developed from Aspergillus oryzae N159-1, which was screened from traditional fermented Korean foods. The intracellular concentration of the inhibitor reached its highest level when the fungus was cultured in tryptic soy broth medium at $27^{\circ}C$ for five days. The inhibitor was purified using a series of purification steps involving ultrafiltration, Sephadex G-25 gel permeation chromatography, strong cation exchange solid phase extraction, reverse-phase high performance liquid chromatography, and size exclusion chromatography. The final yield of the purification was 1.9%. Results of the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis indicated that the purified ${\alpha}$-glucosidase inhibitor was a tri-peptide, Pro-Phe-Pro, with the molecular weight of 360.1 Da. The IC50 value of the peptide against ${\alpha}$-glucosidase activity was 3.1 mg/mL. Using Lineweaver-Burk plot analysis, the inhibition pattern indicated that the inhibitor acts as a mixed type inhibitor.

Suppressive Effects of a Truncated Inhibitor K562 Protein-Derived Peptide on Two Pro-inflammatory Cytokines, IL-17 and TNF-α

  • Hwang, Jong Tae;Yu, Ji Won;Nam, Hee Jin;Song, Sun Kwang;Sung, Woo Yong;Kim, Yongae;Cho, Jang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1810-1818
    • /
    • 2020
  • Inhibitor K562 (IK) protein was first isolated from the culture medium of K562 cells, a leukemia cell line, and is an inhibitory regulator of interferon-γ-induced major histocompatibility complex class II expression. Recently, exogenous truncated IK (tIK) protein showed potential as a therapeutic agent for inflammation-related diseases. In this study, we designed a novel putative anti-inflammatory peptide derived from tIK protein based on homology modeling of the human interleukin-10 (hIL-10) structure, and investigated whether the peptide exerted inhibitory effects against pro-inflammatory cytokines such as IL-17 and tumor necrosis factor-α (TNF-α). The peptide contains key residues involved in binding hIL-10 to the IL-10 receptor, and exerted strong inhibitory effects on IL-17 (43.8%) and TNF-α (50.7%). In addition, we used circular dichroism spectroscopy to confirm that the peptide is usually present in a random coil configuration in aqueous solution. In terms of toxicity, the peptide was found to be biologically safe. The mechanisms by which the short peptide derived from human tIK protein exerts inhibitory effects against IL-17 and TNF-α should be explored further. We also evaluated the feasibility of using this novel peptide in skincare products.

The High Production of Multimeric Angiotensin-converting-enzyme-inhibitor in E. coli

  • Park Je-Hyoen;Kim Sun-Hoi;Ahn Sun-Hee;Lee Jong-Hee;Kim Young-Sook;Lee Sang-Jun;Kong In-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.2
    • /
    • pp.84-87
    • /
    • 2001
  • Multimeric angiotensin-converting-enzyme-inhibitor (ACE}) containing a trypsin cleavable linker peptide between ACEI was constructed. We made synthetic DNA coding for the ACEI peptide with asymmetric and complementary cohesive ends of linker nucleotides. A tandemly repeated DNA cassette for the expression of concatameric short peptide multimers was constructed by ligating the basic units. The resultant multimeric peptide expressed as soluble and trypsin treated peptide was shown at the same retention time with chemically synthetic ACEI by HPLC. The present results showed that the technique developed for the production of the ACEI multimers with trypsin cleavable linker peptides can be generally applicable to the production of short peptide.

  • PDF

Purification of Angiotensin I-Converting Enzyme Inhibitory Peptide from Squid Todarodes pacificus Skin (오징어(Todarodes pacificus) 껍질로부터 Angiotensin I 전환효소 저해 펩티드의 분리 정제)

  • Lee, Jung-Kwon;Jeon, Joong-Kyun;Byun, Hee-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • In this study, an angiotensin I-converting enzyme (ACE) inhibitor from squid skin was purified and characterized. Squid (Todarodes pacificus) skin protein isolates were hydrolyzed using six commercial proteases: alcalase, ${\alpha}$-chymotrypsin, neutrase, papain, pepsin, and trypsin. The peptic hydrolysate had the highest ACE inhibitory activity. The ACE inhibitory peptide was purified using Sephadex G-25 column chromatography and reverse phase high-performance liquid chromatography (HPLC) with a $C_{18}$ column. The purified ACE inhibitory peptide was identified and sequenced, and found to consist of seven amino acid residues: Ser-Ala-Gly-Ser-Leu-Val-Pro (657Da). The $IC_{50}$ value of the purified ACE inhibitory peptide was 766.2 ${\mu}M$, and Lineweaver-Burk plots suggested that the purified peptide acts as a noncompetitive ACE inhibitor. These results suggest that the ACE inhibitory peptide purified from the peptic hydrolysate of squid skin may be of benefit in developing antihypertensive drugs and functional foods.

Hypocholesterolemic Soybean Peptide (IAVP) Inhibits HMG-CoA Reductase in a Competitive Manner

  • Pak, Valeriy V.;Koo, Min-Seon;Lee, Na-Ri;Oh, Su-Kyung;Kim, Myung-Sunny;Lee, Jong-Soo;Kwon, Dae-Young
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.727-731
    • /
    • 2005
  • Synthesized Ile-Ala-Val-Pro (IAVP) peptide, which has the highest hypocholesterolemic effect among a number of synthesized derivatives of Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA) isolated from 11S globulin of soy protein by pepsin digestion, was selected for investigation in the present study. Using a recombinant Syrian hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), we studied in detail the inhibition of this enzyme by IAVP and compared the action of this peptide to that of lovastatin, a known competitive inhibitor of this enzyme. The concentration of IAVP required for 50% inhibition ($IC_{50}$) of HMGR activity in given experimental conditions was $340\;{\mu}M$. Kinetic analysis revealed that the studied peptide is a competitive inhibitor of HMGR with respect to both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and nicotinamide adenine dinucleotide phosphate (NADPH), with an equilibrium constant of inhibitor binding ($K_i\;=\;[E][I]/[EI]$) of $61{\pm}1.2\;{\mu}M$ and $157{\pm}4.4\;{\mu}M$, respectively. At the same conditions, $K_i$ and $IC_{50}$ for lovastatin were $2.2{\pm}0.1\;nM$ and 12.5 nM, respectively. Thus, the given peptide interacts with HMGR as a bisubstrate, consequently blocking access of both substrates to the active sites. The achieved results suggest the design of new peptide sequences having a higher relative affinity to binding sites of this enzyme and an enhancement of their hypocholesterolemic properties.

Development of the Phage Displayed Peptide as an Inhibitor of MCP-1 (Monocyte Chemoattractant Protein-1)-mediated Angiogenesis

  • Jeong, Sun-Joo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.132-134
    • /
    • 2005
  • The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface Plasmon Resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.

  • PDF

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

Characterization of a New Antidementia $\beta$-Secretase Inhibitory Peptide from Rubus coreanus

  • Lee, Dae-Hyoung;Lee, Dae-Hyung;Lee, Jong-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.489-494
    • /
    • 2008
  • In order to develop a potent antidementia $\beta$-secretase inhibitor from phytochemicals, $\beta$-secretase inhibitory activities of extracts from many medicinal plants and herbs were determined. Water extracts from Rubus coreanus showed the highest $\beta$-secretase inhibitory activity of 84.5%. After purification of the $\beta$-secretase inhibitor from R. coreanus using systematic solvent extraction, ultrafiltration, Sephadex G-10 column chromatography, and reverse-phase high performance liquid chromatography (HPLC), a purified $\beta$-secretase inhibitor with $IC_{50}$ inhibitory activity of $6.3{\times}10^3\;ng/mL$ ($1.56{\times}10^{-6}\;M)$ was obtained with a 0.08% solid yield. The molecular mass of the purified $\beta$-secretase inhibitor was estimated to be 576 Da by liquid chromatography-mass spectrometry (LC-MS) and $\beta$-secretase inhibitor also is a new tetrapeptide with the sequence Gly-Trp-Trp-Glu. The purified $\beta$-secretase inhibitory peptide inhibited $\beta$-secretase non-competitively and also show less inhibition on trypsin, however no inhibition on other proteases such as $\alpha$-secretase, chymotrypsin, and elastase.

GSK3β Inhibitor Peptide Protects Mice from LPS-induced Endotoxin Shock

  • Ko, Ryeojin;Jang, Hyun Duk;Lee, Soo Young
    • IMMUNE NETWORK
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Background: Glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) is a ubiquitous serine/threonine kinase that is regulated by serine phosphorylation at 9. Recent studies have reported the beneficial effects of a number of the pharmacological $GSK3{\beta}$ inhibitors in rodent models of septic shock. Since most of the $GSK3{\beta}$ inhibitors are targeted at the ATP-binding site, which is highly conserved among diverse protein kinases, the development of novel non-ATP competitive $GSK3{\beta}$ inhibitors is needed. Methods: Based on the unique phosphorylation motif of $GSK3{\beta}$, we designed and generated a novel class of $GSK3{\beta}$ inhibitor (GSK3i) peptides. In addition, we investigated the effects of a GSK3i peptide on lipopolysaccharide (LPS)-stimulated cytokine production and septic shock. Mice were intraperitoneally injected with GSK3i peptide and monitored over a 7-day period for survival. Results: We first demonstrate its effects on LPS-stimulated pro-inflammatory cytokine production including interleukin (IL)-6 and IL-12p40. LPS-induced IL-6 and IL-12p40 production in macrophages was suppressed when macrophages were treated with the GSKi peptide. Administration of the GSK3i peptide potently suppressed LPS-mediated endotoxin shock. Conclusion: Collectively, we present a rational strategy for the development of a therapeutic GSK3i peptide. This peptide may serve as a novel template for the design of non-ATP competitive GSK3 inhibitors.

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Recombinant E. coli (재조합 대장균으로부터 항고혈압 Angiotensin I-Converting Enzyme 저해제의 특성연구)

  • Kim, Jae-Ho;Jeong, Seung-Chan;Lee, Dae-Hyong;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2005
  • The angiotensin I-converting enzyme (ACE) inhibitor has anti-hypertensive effects and has long been used as prevention or remedy of hypertension. This study were carried out to produce and purify a new ACE inhibitor from recombinant E. coli and further elucidate its structure-function relationship. Recombinant pGEX-4T-3 containing ACE inhibitory peptide gene of Saccharomyces cerevisiae was transformed into E. coli BL21(DE3). Glutathione-S transferase (GST) fusion protein from E. Coli BL21(DE3) harboring the recombination pGEX-4T-3 was obtained and the ACE inhibitory peptide was purified with Sephadex G-25 column chromatography. The purified ACE inhibitory peptide was a novel decapeptide with sequence Tyr-Asp-Gly-Gly-Val-Phe -Arg-Val-Tyr-Thr which shows very low similarity to the other ACE inhibitory peptide sequence. The purified ACE inhibitor competitively inhibited ACE.

  • PDF