• Title/Summary/Keyword: Peptide hydrolysis

Search Result 163, Processing Time 0.02 seconds

Purification of a Novel Anticancer Peptide from Enzymatic Hydrolysate of Mytilus coruscus

  • Kim, Eun-Kyung;Joung, Hong-Joo;Kim, Yon-Suk;Hwang, Jin-Woo;Ahn, Chang-Bum;Jeon, You-Jin;Moon, Sang-Ho;Song, Byeng Chun;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1381-1387
    • /
    • 2012
  • We applied enzymatic hydrolysis and tangential flow filtration (TFF) to purify a novel anticancer peptide from Mytilus coruscus (M. coruscus) and investigated its anticancer properties. To prepare the peptide, eight proteases were employed for enzymatic hydrolysis. Pepsin hydrolysates, which showed clearly superior cytotoxic activity on prostate cancer cells, were further purified using a flow filtration system using a TFF and consecutive chromatographic methods. Finally, a novel anticancer peptide was obtained, and the sequence was identified as Ala-Phe-Asn-Ile-His-Asn-Arg-Asn-Leu-Leu. The peptide from M. coruscus effectively induced cell death on prostate, breast and lung cancer cells but not on normal liver cells. This is the first report of an anticancer peptide derived from the hydrolysates of M. coruscus.

Isolation of a Calcium-binding Peptide from Chlorella Protein Hydrolysates

  • Jeon, So-Jeong;Lee, Ji-Hye;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제15권4호
    • /
    • pp.282-286
    • /
    • 2010
  • To isolate a calcium-binding peptide from chlorella protein hydrolysates, chlorella protein was extracted and hydrolyzed using Flavourzyme, a commercial protease. The degree of hydrolysis and calcium-binding capacity were determined using trinitrobenzenesulfonic acid and orthophenanthroline methods, respectively. The enzymatic hydrolysis of chlorella protein for 6 hr was sufficient for the preparation of chlorella protein hydrolysates. The hydrolysates of chlorella protein were then ultra-filtered under 5 kDa as molecular weight. The membrane-filtered solution was fractionated using ion exchange, reverse phase, normal phase chromatography, and fast protein liquid chromatography to identify a calcium-binding peptide. The purified calcium-binding peptide had a calcium binding activity of 0.166 mM and was determined to be 700.48 Da as molecular weight, and partially identified as a peptide containing Asn-Ser-Gly-Cys based on liquid chromatography/electrospray ionization tandem mass spectrum.

Production of Selenium Peptide by Autolysis of Saccharomyces cerevisiae

  • Lee Jung-Ok;Kim Young-Ok;Shin Dong-Hoon;Shin Jeong-Hyun;Kim Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1041-1046
    • /
    • 2006
  • Selenium-containing peptide (selenium peptide) was produced by autolysis of total proteins of Saccharomyces cerevisiae grown with inorganic selenium. Selenium peptide exhibited antioxidant activity as a glutathione peroxidase (GPx) mimic, and its activity was dependent on the hydrolysis methods. The GPx-like activity of the hydrolyzed selenium peptide increased 2.7-folds when digested by protease, but decreased by acid hydrolysis. During the autolysis of the yeast cell, the GPx-like activity and selenium content increased 4.3- and 2.3-folds, respectively, whereas the average molecular weight (MW) of selenium peptide decreased 70%. The GPx-like activity was dependent on the MW of selenium peptide and was the highest (220 U/mg protein) at 9,500 dalton. The maximum GPx-like activity (28,600 U/g cell) was obtained by 48 h of autolysis of the cells, which were precultured with 20 ppm of selenate. Selenium peptide showed little toxicity, compared with highly toxic inorganic selenium. These results show the potential of selenium peptide as a nontoxic antioxidant that can be produced by simple autolysis of yeast cells.

Antioxidative Activities of Hydrolysates from Duck Egg White Using Enzymatic Hydrolysis

  • Chen, Yi-Chao;Chang, Hsi-Shan;Wang, Cheng-Taung;Cheng, Fu-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권11호
    • /
    • pp.1587-1593
    • /
    • 2009
  • Duck egg white (DEW) hydrolysates were prepared by five enzymes (papain, trypsin, chymotrypsin, alcalase, and flavourzyme) and their antioxidant activities investigated in this study. DEW hydrolyzed with papain (DEWHP) had the highest peptide content among the five enzymatic treatments. Besides, the peptide content of DEWHP increased when the enzyme to substrate ratio (E/S ratio) increased. It was suggested that higher E/S ratio contributed to elevate the degree of hydrolysis of DEW effectively. Similar results were also obtained by Tricine-SDS-PAGE. In addition, SDS-PAGE patterns indicated papain was the only one amongst all enzymes with the ability to hydrolyze DEW. In antioxidant properties, DEWHP showed more than 70% of inhibitory activity on linoleic acid peroxidation and superoxide anion scavenging. Moreover, the $Fe^{2+}$ chelating effect of DEWHP was greater than 90%, while no significant difference was observed in DPPH radical scavenging and reducing ability. The results of peptide contents, antioxidant activities and electrophoresis suggested that the higher the peptide content, the stronger the antioxidant activities in DEWHP.

Reduction of Interlukin-8 by Peptides from Digestive Enzyme Hydrolysis of Hen Egg Lysozyme

  • Lee, MooHa;Young, Denise;Mine, Yoshinori;Jo, CheoRun
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.706-711
    • /
    • 2009
  • Lysozyme was treated with digestive enzymes and the production of interleukin 8 (IL-8) was measured in Caco-2 cell with the peptides from lysozyme upon stimulating with lipopolysaccharide (LPS) to investigate the overall anti-inflammatory activity of lysozyme when it is in digestive tracts. Lysozyme reduced IL-8 production, and the peptides from pepsin hydrolysis of lysozyme had the similar effect. The products of trypsin digestion of lysozyme had no effect on the reduction of IL-8 production while those of pepsin-trypsin hydrolysis did. The effectiveness of lowering IL-8 production was not different by time of the peptide addition. When Caco-2 cells were pre-incubated with peptides for 24 hr, the reduction effects were observed from the peptides from pepsin hydrolysis, indicating that some of the peptides are still remaining in the cells. Therefore, it can be concluded that the IL-8 reduction effect of lysozyme against LPS still remained even after the pepsin and trypsin hydrolysis.

Irreversible Thermoinactivation Mechanisms of Subtilisin Carlsberg

  • Dong Uk Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.600-604
    • /
    • 1989
  • In order to find the rational methods for improving the thermal stability of subtilisin Carlsberg, the mechanisms of irreversible thermoinactivation of the enzyme were studied at $90^{\circ}C.$ At pH 4, the main process was hydrolysis of peptide bond. This process followed first order kinetics, yielding a rate constant of $1.26\;{\times}\;10^{-1}h^{-1}$. Hydrolysis of peptide bond of PMS-subtilisin occurred at various sites, which produced new distinct fragments of molecular weights of 27.2 KD, 25.9 KD, 25.0 KD, 22.3 KD, 19.0 KD, 17.6 KD, 16.5 KD, 15.7 KD, 15.0 KD, 13.7 KD, and 12.7 KD. Most of the new fragments originated from the acidic hydrolysis at the C-side of aspartic acid residues. However 25.0 KD, 15.7 KD, and 13.7 KD which could not be removed in purification steps stemmed from the autolytic cleavage of subtilisin. The minor process at pH 4 was deamidation at asparagine and/or glutamine residues and some extend of aggregation was also observed. However, the aggregation was main process at pH 7 with a first order kinetic constant of $16 h^{-1}.$ At pH 9, the main process seemed to be combination of deamidation and cleavage of peptide bond.

고농도 Heme-iron의 생산을 위한 Hemoglobin의 가수분해 및 분리 조건 (Conditions of Hemoglobin Hydrolysis and Separation for the Production of Enriched Heme-iron)

  • 강인규;인만진;오남순
    • Applied Biological Chemistry
    • /
    • 제44권4호
    • /
    • pp.219-223
    • /
    • 2001
  • Hemoglobin(Hgb)의 효소 가수분해액으로부터 고농도 heme-iron의 분리에 영향을 주는 기질의 농도, 가수분해도 (DH, degree of hydrolysis) 및 분리 pH의 효과 등을 조사하였으며, pilot scale에서 고농도 heme-iron을 생산하였다. 최적 반응조건(pH 10.0, $50^{\circ}C$, 5 hr)에서의 Esperase에 의한 Hgb의 DH는 $24{\sim}25%$였다. Hgb의 농도는 heme-iron의 분리에 영향을 미쳐서 Hgb의 농도가 2.5%, 5.0%, 10.0%로 증가할수록 heme-iron/peptide(heme-iron의 분리도)는 각각 47.4%, 35.6%, 21.8%로 감소하였으며, 이에 따라 농축율도 감소하였다. Hgb의 가수분해액으로부터 고농도 heme-iron의 분리에 효율적인 pH 영역은 DH에 따라 달라졌으며, DH가 6.3%의 경우는 pH $5.0{\sim}6$에서 heme-iron/peptide의 비가 8.92%, DH가 14.5%인 경우는 pH $4.0{\sim}6.0$에서 $12.1{\sim}19.5%$였으며, DH가 24.3%인 경우는 pH $3.0{\sim}5.0$에서 $34.7{\sim}36.4%$로 가수분해도가 높을수록 고농도 heme-iron의 분리시 최적 PH 범위가 산성 영역으로 이동되었으며, 이 영역의 pH에서 peptide의 용해도 증가로 분리도가 증가되었다. 가수분해액으로부터 분리된 heme-iron의 분자량은 약 1 kDa정도로 hematin과 유사한 분리패턴을 보였다. Pilot scale로 제조한 고농도 heme-iron 제품에서의 heme-iron 함량은 27.1%, heme-iron/peptide 비는 38.7%, 생산수율은 9.3%이었다.

  • PDF

어류비늘에서 추출한 콜라겐펩타이드의 제조 및 유효성 분석 (Preparation and Availability Analysis of Collagen Peptides Obtained in Fish Scale)

  • 이미진;정노희
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.457-466
    • /
    • 2009
  • This study is manufacturing method and analysis of feasibility about collagen peptide from fish scale. This is processed by enzyme hydrolysis, isolating and refining etc. The results of analysis of nutritional composition showed protein content of collagen peptide. In the analysis of constitutive amino acids, the ratio of contents of hydroxyproline and glycine, the characteristics of collagen peptides appeared similar and the contents of glutamic acid and aspartic acid which are involved in protein metabolism. As a result of measurement of total polyphenol content and total flavonoid, it showed that collagen peptide had more contents generally, and the effect of bioactivity of pig-skin collagen peptide appeared higher although different kinds of scale collagen peptide showed a little DPPH radical scavenging ability, total antioxidant capacity by ABTS, ACE inhibitory.

금속착물로 아미드 가수분해 촉매화에 관한 연구 (A STUDY ON AMIDI HYDROLYSIS CATALYZED BY MITAL COMPlEXES)

  • 김병순;오영희
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.579-583
    • /
    • 1996
  • 본 연구는 날로 더해가는 오염의 직접간접 원인인 고분자성 제품류의 분해 촉진에 사용될 촉매 개발의 일차적 연구로서, 구리 촉매작용에 의한 아미드 결합의 분해 반응을 수행하였다. 가시광선 스펙트럼의 변화를 측정함으로써 반응을 추적하였다. 아미드 리간드를 포함하는 구리 화합물에서 수용액의 pH의 증가에 따라, 온도의 증가에 따라 아미드의 반응속도가 증가한다. 반응속도는 구리 화합물에 대하여 1차 반응으로 밝혀졌다. 반응의 중간체로 구리-히드록시 화합물이 관여하는 반응 메카니즘을 제시하였다. 분해 반응 메카니즘의 확실한 이해를 통하여 펩티드 결합의 분해 반응에 사용될 좋은 촉매 개발에의 응용이 기대 된다.

  • PDF

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • 제41권1호
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.