• Title/Summary/Keyword: Pentose transport

Search Result 3, Processing Time 0.017 seconds

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Influence of Respiration on Photosynthetic Electron Transport in psaB Mutants from Cyanobacterium Synechocystis sp. PCC6803 (Cyanobacterium Synechocystis sp.PCC6803 psaB 돌연변이주의 광합성 전자전달에 미치는 호흡의 영향)

  • 윤병철;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.1
    • /
    • pp.59-72
    • /
    • 1997
  • The influence of respiration on photosythetic electron transport were investigated in the Wid type and psaB mutants from Syneehocystis sp. PCC6803. The amount of glucose uptake in the wild type was proportional to the glucose concentration added in wild type and less than that of psaB mutants in the dark. It was suggested that psaB mutants more depend on the glucose than the wild type. It was investigated how the activities of isocitrate dehydrogenase(IDH) and glucose-6-phos-phate dehydrogenase(G6PDH) were changed. The activities of IDH were very low. While, the ac-tivities of G6PDH were much higher than that of IDH. These results agree to the reports that ex-ogenous glucose was dismilated aerobically via Oxidative Pentose Phosphate Pathway in heterotrophic cyanobacteria. PsaB mutants showed high G6PDH activity in the presence of glucose as well as in the dark and high respiratory activities especially in the dark. It was also investigated how photosynthetic electron transport activities were changed. PsaB mutants showed higher photosynthetic electron tranasport activities than wild type in the presence of glucose as well as in the dark. In the results, it was proposed that photosynthetic electron transport between PS I and PS U was complemented by respiratory electron transport through the NADPH generated by Dxidative Pentose Phophate Pathway in psaB mutant from Synechocystis sp. PCC6803. Key words: Photosynthetic electron transport, Respiration, Synechoystis sp. PCC6803, psaB mutant, Glucose uptake, IDH, G6PDH, Respiratory electron transport activity.

  • PDF

The Mechanisms for Xylose Transport into Yeasts (효모내로의 Xylose 운반 기작)

  • Han, Ji-Hye;Choi, Gi-Wook;Chung, Bong-Woo;Min, Ji-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • The biochemical study of sugar uptake in yeasts started five decades ago and led to the early production of abundant kinetic and mechanistic data. However, the first accurate overview of the underlying sugar transporter genes was obtained relatively late, due mainly to the genetic complexity of hexose uptake in the model yeast, Saccharomyces cerevisiae. The genomic era generated in turn a massive amount of information, allowing the identification of a multitude of putative sugar transporter and sensor-encoding genes in yeast genomes, many of which are phylogenetically related. This review aims to briefly summarize our current knowledges on the biochemical and molecular features of the transporters of pentoses in yeasts, when possible establishing links between previous kinetic studies and genomic data currently available. Emphasis is given to recent developments concerning the identification of D-xylose transporter genes, which are thought to be key players in the optimization of S. cerevisiae for bioethanol production from lignocellulose hydrolysates.