Browse > Article

The Mechanisms for Xylose Transport into Yeasts  

Han, Ji-Hye (Department of Bioprocess Engineering, Chonbuk National University)
Choi, Gi-Wook (Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd.)
Chung, Bong-Woo (Department of Bioprocess Engineering, Chonbuk National University)
Min, Ji-Ho (Department of Bioprocess Engineering, Chonbuk National University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.1, 2010 , pp. 7-12 More about this Journal
Abstract
The biochemical study of sugar uptake in yeasts started five decades ago and led to the early production of abundant kinetic and mechanistic data. However, the first accurate overview of the underlying sugar transporter genes was obtained relatively late, due mainly to the genetic complexity of hexose uptake in the model yeast, Saccharomyces cerevisiae. The genomic era generated in turn a massive amount of information, allowing the identification of a multitude of putative sugar transporter and sensor-encoding genes in yeast genomes, many of which are phylogenetically related. This review aims to briefly summarize our current knowledges on the biochemical and molecular features of the transporters of pentoses in yeasts, when possible establishing links between previous kinetic studies and genomic data currently available. Emphasis is given to recent developments concerning the identification of D-xylose transporter genes, which are thought to be key players in the optimization of S. cerevisiae for bioethanol production from lignocellulose hydrolysates.
Keywords
Sugar transporter; pentose transporter; xylose uptake; yeast;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Henderson, P. J. F., and M. C. J. Maiden. 1990. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Phil. Trans. R. Soc. Land B. 326: 391-410.   DOI
2 Spencer-Martins, I. and N. van Uden. 1985. Catabolite interconversion of glucose transport systems in the yeast Candida wickerhamii. Biochim. Biophys. Acta. 812, 168-172.   DOI   ScienceOn
3 Becker, J. and E. Boles. 2003. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl. Environ. Microbiol. 69: 4144-4150.   DOI   ScienceOn
4 Cason, D. T., I. Spencer-Martins, and N. van Uden. 1986. Transport of fructose by a proton symport in a brewing yeast. FEMS Microbiol. Lett. 36: 307-309.   DOI
5 Kotter, P. and M. Ciriacy. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38: 776-783.   DOI   ScienceOn
6 Gardonyi, M., M. Osterberg, C. Rodrigues, I. Spencer-Martins, and B. Hahn-H¨agerdal. 2003b. High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res. 3: 45-52.
7 Gaur, M., N. Puri, R. Manoharlal, V. Rai, G. Mukhopadhayay, D. Choudhury, and R. Prasad. 2008. MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics. 9: 579-590.   DOI
8 Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326.   DOI   ScienceOn
9 Saloheimo, A., J. Rauta, and O. V. Stasyk. 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Environ. Microbiol. 74: 1041-1052
10 Kruckeberg, A. L., M. C. Walsh, and K. van Dam. 1998. How do yeast cells sense glucose? Bioessays 20: 972-976.
11 Kotyk, A. and C. Haškovec. 1967. Properties of the sugar carrier in baker's yeast. II. Specificity of transport. Folia Microbiol (Praha) 12: 121-131.   DOI   ScienceOn
12 Hamacher, T., J. Becker, M. Ga'rdonyi, B. Hahn-Ha gerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
13 Gardonyi, M., M. Jeppsson, G. Liden, M.F. Gorwa-Grauslund, and B. Hahn-Hagerdal. 2003a. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 82: 818-824.   DOI   ScienceOn
14 Karhumaa, K., B. Wiedemann, B. Hahn-Hägerdal, E. Boles, and M. F. Gorwa-Grauslund. 2006. Co-utilization of Larabinose and Dxylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb. Cell Fact. 5: 18.   DOI
15 Runquist, D., C. Fonseca, P. Radström, I. Spencer-Martins, and B. Hahn-Hägerdal. 2009. Exprission of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82: 123-130.   DOI   ScienceOn
16 Lucas, C. and N. van Uden. 1986. Transport of hemicelluloses monomers in the xylose-fermenting yeast Candida shehatae. Appl. Microbiol. Biot. 23: 491-495.   DOI
17 Jeffries, T. W., I. V. Grigoriev, J. Grimwood, J. M. Laplaza, A. Aerts, A. Salamov, J. Schmutz, E. Lindquist, P. Dehal, H. Shapiro, Y.-S. Jin, V. Passoth, and P.M. Richardson. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319-326.   DOI   ScienceOn
18 Fonseca, C., R. Romao, H. Rodrigues de Sousa, B. Hahn-H¨agerdal, and I. Spencer-Martins. 2007. L-Arabinose transport and catabolism in yeast. FEBS J. 274: 3589-3600.   DOI   ScienceOn
19 Kruckeberg, A. L., L. Ye, J. A. Berden, and K. van Dam. 1999. Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein. Biochem. J. 339: 299-307.   DOI   ScienceOn
20 Chin, J. W., R. Khankal, C. A. Monroe, C. D. Maranas, and P. C. Cirino. 2008. Analysis of NADPH supply during xylitol production by engineered Escheridhia coli. Biotechnol. Bioeng. 102: 209-220.
21 Leandro, M. J., C. Fonseca, and P. Concalves. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9: 511-525.   DOI   ScienceOn
22 Leandro, M. J., I. Specer-Martins, P. Concalves. 2008. The expression in Saccharomyces cerevisiae of a glucoe/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154: 1646-1655.   DOI   ScienceOn
23 Kresnowati, M. T. A. P., W. A. van Winden, M. J. H. Almering, A. ten Pierick, C. Ras, T. A. Knijnenburg, P. Daran-Lapujade, J. T. Pronk, J. J. Heijnen, and J. M. Daran. 2006. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol. Syst. Biol. 2, 49.
24 Kuyper, M., M. J. Toirkens, J. A. Diderich, A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934.   DOI   ScienceOn
25 Weierstall, T., C. P. Hollenberg, and E. Boles. 1999. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31: 871-883.   DOI   ScienceOn
26 Hahn-Hagerdal, B., N. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi. 2006. Biol-ethanol-the fuel of tomorrow from the residues of today. Trend Biotechnol. 24: 549-556.   DOI   ScienceOn
27 Pao, S. S., I. T. Paulsen, and M. H. Jr Saier. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. R. 62: 1-34.
28 Kilian, S. G. and N. van Uden. 1988. Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl. Microbiol. Biotechnol. 27: 545-548.
29 Rolland, F., J. Winderickx, and J. M. Thevelein. 2002. Glucosesensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2: 183-201.
30 Heredia, C. F., A. Sols, and G. Delafuente. 1968. Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329.   DOI   ScienceOn
31 Leandro, M. J., P. Goncalves, and I. Spencer-Martins. 2006. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast $xylose-H^+$ symporter. Biochem. J. 395: 543-549.   DOI   ScienceOn
32 Vardy, E., I. T. Arkin, K. E. Gottschalk, H. R. Kaback, and S. Schuldiner. 2004. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13: 1832-1840.   DOI   ScienceOn
33 Wieczorke, R., S. Dlugai, S. Krampe, and E. Boles. 2003. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol. Biochem. 13, 123-134.   DOI   ScienceOn
34 Hahn-Hägerdal, B., K. Karhumaa, M. Jeppson, and M. F. Gorwa-Grauslund. 2007. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108: 147-177.
35 Does, A. L. and L. F. Bisson. 1989. Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl. Environ. Microb. 55: 159-164.
36 Cirillo, V. P. 1968. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. J. Bacterio.l 95: 1727-1731.
37 De Hertogh, B., F. Hancy, A. Goffeau, and P. V. Baret. 2006. Emergence of species-specific transporters during evolution of the Hemiascomycete phylum. Genetics. 172: 771-781.
38 Hahn-Hagerdal, B., K. Karhumaa, C. Fonseca, I. Spencer-Martins, and M. F. Gorwa-Grauslund. 2007. Towards industrial pentosefermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937-953.   DOI   ScienceOn