• Title/Summary/Keyword: Penicillium polonicum

Search Result 17, Processing Time 0.021 seconds

Diversity and Antiaflatoxigenic Activities of Culturable Filamentous Fungi from Deep-Sea Sediments of the South Atlantic Ocean

  • Zhou, Ying;Gao, Xiujun;Shi, Cuijuan;Li, Mengying;Jia, Wenwen;Shao, Zongze;Yan, Peisheng
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.151-160
    • /
    • 2021
  • Despite recent studies, relatively few are known about the diversity of fungal communities in the deep Atlantic Ocean. In this study, we investigated the diversity of fungal communities in 15 different deep-sea sediments from the South Atlantic Ocean with a culture-dependent approach followed by phylogenetic analysis of ITS sequences. A total of 29 fungal strains were isolated from the 15 deep-sea sediments. These strains belong to four fungal genera, including Aspergillus, Cladosporium, Penicillium, and Alternaria. Penicillium, accounting for 44.8% of the total fungal isolates, was a dominant genus. The antiaflatoxigenic activity of these deep-sea fungal isolates was studied. Surprisingly, most of the strains showed moderate to strong antiaflatoxigenic activity. Four isolates, belonging to species of Penicillium polonicum, Penicillium chrysogenum, Aspergillus versicolor, and Cladosporium cladosporioides, could completely inhibit not only the mycelial growth of Aspergillus parasiticus mutant strain NFRI-95, but also the aflatoxin production. To our knowledge, this is the first report to investigate the antiaflatoxigenic activity of culturable deep-sea fungi. Our results provide new insights into the community composition of fungi in the deep South Atlantic Ocean. The high proportion of strains that displayed antiaflatoxigenic activity demonstrates that deep-sea fungi from the Atlantic Ocean are valuable resources for mining bioactive compounds.

Molecular and Morphological Identification of Fungal Species Isolated from Bealmijang Meju

  • Kim, Ji-Yeun;Yeo, Soo-Hwan;Baek, Sung-Yeol;Choi, Hye-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1270-1279
    • /
    • 2011
  • Bealmijang is a short-term aged paste made from meju, which is a brick of fermented soybeans and other ingredients. Different types of bealmijang are available depending on the geographic region or ingredients used. However, no study has clarified the microbial diversity of these types. We identified 17 and 14 fungal species from black soybean meju (BSM) and buckwheat meju (BWM), respectively, on the basis of morphology, culture characteristics, and internal transcribed spacer and ${\beta}$-tubulin gene sequencing. In both meju, Aspergillus oryzae, Rhizopus oryzae, Penicillium polonicum, P. steckii, Cladosporium tenuissimum, C. cladosporioides, C. uredinicola, and yeast species Pichia burtonii were commonly found. Moreover, A. flavus, A. niger, P. crustosum, P. citrinum, Eurotium niveoglaucum, Absidia corymbifera, Setomelanomma holmii, Cladosporium spp. and unclassified species were identified from BSM. A. clavatus, Mucor circinelloides, M. racemosus, P. brevicompactum, Davidiella tassiana, and Cladosporium spp. were isolated from BWM. Fast growing Zygomycetous fungi is considered important for the early stage of meju fermentation, and A. oryae and A. niger might play a pivotal role in meju fermentation owing to their excellent enzyme productive activities. It is supposed that Penicillium sp. and Pichia burtonii could contribute to the flavor of the final food products. Identification of this fungal diversity will be useful for understanding the microbiota that participate in meju fermentation, and these fungal isolates can be utilized in the fermented foods and biotechnology industries.

Effect of Curing Conditions on Inhibition of Tuber Rot in Subtropical Yam (Dioscorea alata) during Storage (아열대 마(Dioscorea alata)의 저장중 부패 억제를 위한 큐어링 효과)

  • Kim, Ki-Sun;Kwon, Soon-Bae;Chang, Kwang-Jin;Hong, Sae-Jin;Kim, Byung-Sup
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 2012
  • In order to improve storability of subtropical yam produced in South Korea, the major pathogens found during the storage were isolated and identified of the pathogenicity, and rot inhibition effect was studied based on the curing treatment condition. Penicillium sclerotigenum and Penicillium polonicum were identified as major pathogens causing rot in subtropical yam during storage, and P. sclerotigenum had stronger pathogenicity. Only the cut surface which has been made during a harvest and has been made smooth before curing generated a normal callus layer. The cut surface of tuberous root was cured in 95% of relativity humidity for three days at $23^{\circ}C$, and cured at $28^{\circ}C$ and $33^{\circ}C$. The observation of callus layer showed that the $23^{\circ}C$ treatment group had similar color saturation between tuberous root and pellicle, while the groups treated above $28^{\circ}C$ showed clear distinction. The generation rate of callus 0.5mm or bigger was 93 percent at $28^{\circ}C$ treatment, 96% at $33^{\circ}C$ treatment, but was 52% at $23^{\circ}C$ treatment. The conventional curing treatment group that used wind or sunlight at room temperature created little callus layer. The infection rate of pathogens according to the relative humidity inside the storage room was low at 40% and 60% of humidity, and the curing treatment period did not make a difference. When the humidity inside the storage room was 80%, all treatment groups rapidly increased the fungal pathogens. The rotten rate of each treatment was studied after 180 days during which the storage temperature was maintained at $16^{\circ}C$ and relative humidity 60%. While the rotten rate of tuberous root that has been cut in conventional curing treatment based on solar and wind was 43%, the one cured at over $28^{\circ}C$ and created the callus layer was less than 18%. While even a healthy tuberous root showed 25% of rotten rate in the traditional treatment group, the one cured at over $28^{\circ}C$ was less than 10%. The weight loss was 1-6% lower in the forced treatment group than in the conventional treatment group.

Fungal Diversity of Rice Straw for Meju Fermentation

  • Kim, Dae-Ho;Kim, Seon-Hwa;Kwon, Soon-Wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1654-1663
    • /
    • 2013
  • Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature ($15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $15^{\circ}C$ and $25^{\circ}C$, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at $25^{\circ}C$ and $35^{\circ}C$. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

The Mycobiota of Air Inside and Outside the Meju Fermentation Room and the Origin of Meju Fungi

  • Kim, Dae-Ho;Kim, Sun-Hwa;Kwon, Soon-wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.258-265
    • /
    • 2015
  • The fungi on Meju are known to play an important role as degrader of macromolecule of soybeans. In order to elucidate the origin of fungi on traditional Meju, mycobiota of the air both inside and outside traditional Meju fermentation rooms was examined. From 11 samples of air collected from inside and outside of 7 Meju fermentation rooms, 37 genera and 90 species of fungi were identified. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp., Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, Asp. nidulans, Aspergillus sp., Cla. cladosporioides, Eurotium sp., Penicillium sp., Cla. tenuissimum, Asp. niger, Eur. herbariorum, Asp. sydowii, and Eur. repens were collected with high frequency. The concentrations of the genera Aspergillus, Eurotium, and Penicillium were significantly higher in inside air than outside air. From this result and those of previous reports, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, Asp. oryzae, Pen. polonicum, Eur. repens, Pen. solitum, and Eur. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genera Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.

Effects of Temperature and Humidity on Fungal Occurrence in Dried Red Pepper during Storage

  • Kim, Sosoo;Baek, Seul Gi;Hung, Nguyen Bao;Kim, Se-Ri;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.155-163
    • /
    • 2021
  • Dried red peppers are frequently contaminated with mycotoxins during storage. To determine the effect of storage environments on fungal occurrence and subsequent mycotoxin accumulation in dried red peppers, we monitored red pepper powder and whole fruit samples for fungal occurrence under various temperatures and relative humidity (RH) conditions during 340 days. Fungal occurrences fluctuated in both pepper forms throughout the storage but they were higher in pepper powder than whole one, higher under low temperatures (-20℃, 0℃, or 4℃) than others (10℃, 25℃, or 30℃), and higher under RH 93% than RH 51% and 69% in both peppers. The samples exhibiting high fungal occurrences were associated mainly with dominant species such as Aspergillussydowii, Penicillium solitum, P. roqueforti, P. polonicum, or P. chrysogenum. Mycotoxigenic species, including A. flavus, A. ochraceus, A. westerdijkiae, A. tubingensis, and P. citrinum, were also detected throughout the samples. Although mycotoxins were not detected in the samples, mycotoxigenic potential of A. flavus, A. ochraceus, and A. westerdijkiae isolates were confirmed. These results show that low temperatures (-20℃, 0℃, or 4℃) and/or high surrounding RH (>93%) are not safe environments for storage of dried red peppers as fungal growth can occur under these conditions.

Isolation and Identification of Fungi from a Meju Contaminated with Aflatoxins

  • Jung, Yu Jung;Chung, Soo Hyun;Lee, Hyo Ku;Chun, Hyang Sook;Hong, Seung Beom
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1740-1748
    • /
    • 2012
  • A home-made meju sample contaminated naturally with aflatoxins was used for isolation of fungal strains. Overall, 230 fungal isolates were obtained on dichloran rosebengal chloramphenicol (DRBC) and dichloran 18% glycerol (DG18) agar plates. Morphological characteristics and molecular analysis of a partial ${\beta}$-tubulin gene and the internal transcribed spacer (ITS) of rDNA were used for the identification of the isolates. The fungal isolates were divided into 7 genera: Aspergillus, Eurotium, Penicillium, Eupenicillium, Mucor, Lichtheimia, and Curvularia. Three strains from 56 isolates of the A. oryzae/flavus group were found to be aflatoxigenic A. flavus, by the presence of the aflatoxin biosynthesis genes and confirmatory aflatoxin production by high-performance liquid chromatography (HPLC). The predominant isolate from DRBC plates was A. oryzae (42 strains, 36.2%), whereas that from DG18 was A. candidus (61 strains, 53.5%). Out of the 230 isolates, the most common species was A. candidus (34.3%) followed by A. oryzae (22.2%), Mucor circinelloides (13.0%), P. polonicum (10.0%), A. tubingensis (4.8%), and L. ramosa (3.5%). A. flavus and E. chevalieri presented occurrence levels of 2.2%, respectively. The remaining isolates of A. unguis, P. oxalicum, Eupenicillium cinnamopurpureum, A. acidus, E. rubrum, P. chrysogenum, M. racemosus, and C. inaequalis had lower occurrence levels of < 2.0%.