Browse > Article
http://dx.doi.org/10.4014/jmb.1207.07048

Isolation and Identification of Fungi from a Meju Contaminated with Aflatoxins  

Jung, Yu Jung (Department of Food Science and Technology, Kongju National University)
Chung, Soo Hyun (Department of Food and Nutrition, College of Health Science, Korea University)
Lee, Hyo Ku (Department of Food Science and Technology, Kongju National University)
Chun, Hyang Sook (Food Safety Research Division, Korea Food Research Institute)
Hong, Seung Beom (Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1740-1748 More about this Journal
Abstract
A home-made meju sample contaminated naturally with aflatoxins was used for isolation of fungal strains. Overall, 230 fungal isolates were obtained on dichloran rosebengal chloramphenicol (DRBC) and dichloran 18% glycerol (DG18) agar plates. Morphological characteristics and molecular analysis of a partial ${\beta}$-tubulin gene and the internal transcribed spacer (ITS) of rDNA were used for the identification of the isolates. The fungal isolates were divided into 7 genera: Aspergillus, Eurotium, Penicillium, Eupenicillium, Mucor, Lichtheimia, and Curvularia. Three strains from 56 isolates of the A. oryzae/flavus group were found to be aflatoxigenic A. flavus, by the presence of the aflatoxin biosynthesis genes and confirmatory aflatoxin production by high-performance liquid chromatography (HPLC). The predominant isolate from DRBC plates was A. oryzae (42 strains, 36.2%), whereas that from DG18 was A. candidus (61 strains, 53.5%). Out of the 230 isolates, the most common species was A. candidus (34.3%) followed by A. oryzae (22.2%), Mucor circinelloides (13.0%), P. polonicum (10.0%), A. tubingensis (4.8%), and L. ramosa (3.5%). A. flavus and E. chevalieri presented occurrence levels of 2.2%, respectively. The remaining isolates of A. unguis, P. oxalicum, Eupenicillium cinnamopurpureum, A. acidus, E. rubrum, P. chrysogenum, M. racemosus, and C. inaequalis had lower occurrence levels of < 2.0%.
Keywords
Meju; fungi; aflatoxigenicity; fungal frequency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kwon, D. J. 2002. Comparison of characteristics of koji manufactured with Bacillus subtilis B-4 and Aspergillus oryzae F-5. Kor. J. Food Sci. Technol. 34: 873-878.
2 Lee, C. H. and S. S. Lee. 2002. Cereal fermentation by fungi. Appl. Mycol. Biotechnol. 2: 151-170.
3 Lee, S. S., K. H. Park, K. J. Choi, and S. A. Won. 1993. Identification and isolation of Zygomycetous fungi found on maeju, a raw material of Korean traditional soysauces. Kor. J. Mycol. 21: 172-187.
4 Barbesgaard, P., H. P. Heldt-Hansen, and B. Diderichsen. 1992. On the safety of Aspergillus oryzae: A review. Appl. Microbiol. Biotechnol. 36: 569-572.
5 Chang, P. K. and K. C. Ehrlich. 2010. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int. J. Food Microbiol. 15: 189-199.
6 Chang, P. K., B. W. Horn, and J. W. Dorner. 2005. Sequence break points in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet. Biol. 42: 914-923.   DOI   ScienceOn
7 Chelkowski, J. 1991. Mycological quality of mixed feeds and ingredients, pp. 217-227. In J. Chelkowski (ed.). Cereal Grain, Mycotoxins, Fungi and Quality in Drying and Storage. Elsevier, Amsterdam, London, New York.
8 Cho, D. H. and W. J. Lee. 1970. Microbiological studies of Korean native soy-sauce fermentation; A study on the microflora of fermented Korean maeju loaves. J. Kor. Agric. Chem. Soc. 13.
9 Criseo, G., C. Racco, and O. Romeo. 2008. High genetic variability in non-aflatoxigenic A. flavus strains by using quadruplex PCR-based assay. Int. J. Food Microbiol. 125: 341-343.   DOI   ScienceOn
10 White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., NY.
11 Yoo, J. Y. and H. G. Kim. 1998. Characteristics of traditional mejus of nation-wide collection. J. Kor. Soc. Food Sci. Nutr. 27: 259-267.
12 Lee, S. S., K. H. Park, K. J. Choi, and S. A. Won. 1993. A study on Hyphomycetous fungi found on maejus, a raw material of Korean traditional soysauce. Kor. J. Mycol. 21: 242-272.
13 Park, K.-Y., K.-B. Lee, and L. B. Bullerman. 1988. Aflatoxin production by Aspergillus parasiticus and its stability during the manufacture of Korean soy paste (doenjang) and soy sauce (kanjang) by traditional method. J. Food Prot. 51: 938-945.
14 Lee, S. W., S. K. Park, and H. C. Kim. 2001. Characteristics of red mold isolated from traditional meju. Kor. J. Post-harvest Sci. Technol. 8: 199-205.
15 Niessen, L. 2008. PCR-based diagnosis and quantification of mycotoxin-producing fungi. Adv. Food Nutr. Res. 54: 81-138.
16 Park, J. H., S. J. Kang, S. S. Oh, and D. H. Chung. 2001. The screening of aflatoxin producing fungi from commercial meju and soybean paste in western Gyeongnam by immunoassay. J. Food Hyg. Safety 16: 274-279.
17 Peterson, S. W. 2008. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205-226.   DOI   ScienceOn
18 Pitt, J. I. and A. D. Hocking. 2009. Fungi and Food Spoilage, 3rd Ed. Springer, New York.
19 Rank, C., M. L. Klejnstrup, L. M. Petersen, S. Kildgaard, J. C. Frisvad, C. H. Gotfredsen, and T. O. Larsen. 2012. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites 2: 39-56.   DOI
20 Reddy, B. N. and C. R. Raghavender. 2007. Outbreaks of aflatoxicoses in India. Afr. J. Food Agric. Nutr. Devel. 7: 1-15.
21 Samson, R. A., E. S. Hoekstra, and J. C. Frisvad. 2004. Introduction to Food and Airborne Fungi, 7th Ed. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
22 Samson, R. A., K. A. Seifert, A. F. A. Kuijpers, J. A. M. P. Houbraken, and J. C. Frisvad. 2004. Phylogenetic analysis of Penicillium subgenus Penicillium using partial ${\beta}$-tubulin sequences. Stud. Mycol. 49: 175-200.
23 Tsai, G. J. and S. C. Yu. 1997. An enzyme-linked immunosorbent assay for the detection of Aspergillus parasiticus and Aspergillus flavus. J. Food Prot. 60: 978-984.
24 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
25 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI   ScienceOn
26 Tominaga, M., Y. H. Lee, R. Hayashi, O. Suzuki, K. Tamada, K. Skamoto, K. Gotoh, and O. Akita. 2006. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl. Environ. Microbiol. 72: 484-490.   DOI   ScienceOn
27 Wei, D. L. and S. C. Jong. 1986. Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia 93: 19-24.   DOI   ScienceOn
28 Degola, F., E. Berni, C. Dall'Asta, E. Spotti, R. Marchelli, I. Ferrero, and F. M. Restivo. 2006. A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. J. Appl. Microbiol. 103: 409-417.
29 Fraga, M. E., F. Curvello, M. J. Gatti, L. R. Cavaglieri, A. M. Dalcero, and C. A. da Rocha Rosa. 2007. Potential aflatoxin and ochratoxin A production by Aspergillus species in poultry feed processing. Vet. Res. Commun. 31: 343-353.
30 He, C. H., Y. H. Fan, G. F. Liu, and H. B. Zhang. 2008. Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability. Int. J. Mol. Sci. 9: 2366-2375.   DOI   ScienceOn
31 Hussein, S. H. and J. M. Brasel. 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167: 101-134.   DOI   ScienceOn
32 Hillis, D. M. and M. T. Dixon. 1991. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411-453.   DOI   ScienceOn
33 Hocking, A. D. and J. I. Pitt. 1980. Dichloran-glycerol medium for enumeration of xerophilic fungi from low moisture foods. Appl. Environ. Microbiol. 39: 488-492.
34 Horton, T. R. and T. D. Bruns. 2001. The molecular revolution in ectomycorrhizal ecology: Peeking into the black box. Mol. Ecol. 10: 1855-1871.   DOI   ScienceOn
35 Jumpponen, A. 2009. Analysis of rhizosphere fungal communities using rRNA and rDNA, pp. 29-40. In A. Varma and A. C. Kharkwal (eds.). Symbiotic Fungi, Soil Biology, 18th. Ed. Springer-Verlag, Berlin.
36 Kim, D. H., S. H. Kim, Y. K. Kim, S. O. Kim, S. J. Kim, and S. B. Hong. 2009. Reidentification of Aspergillus spp. isolated from clinical specimens of patients suspected as pulmonary aspergillosis in Korea. Kor. J. Med. Mycol. 14: 133-144.
37 Kim, D. M., S. H. Chung, and H. S. Chun. 2011. Multiplex PCR assay for the detection of aflatoxigenic and nonaflatoxigenic fungi in meju, a Korean fermented soybean food starter. Food Microbiol. 28: 1402-1408.   DOI   ScienceOn
38 Kim, J. Y., S. H. Yeo, S. Y. Baek, and H. S. Choi. 2011 Molecular and morphological identification of fungal species isolated from bealmijang meju. J. Microbiol. Biotechnol. 21: 1270-1279.   DOI   ScienceOn
39 Kiyota, T., R. Hamada, K. Sakamoto, K. Iwashita, O. Yamada, and S. Mikami. 2011. Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. J. Biosci. Bioeng. 111: 512-517.   DOI   ScienceOn