• Title/Summary/Keyword: Penicillium isolates

Search Result 105, Processing Time 0.026 seconds

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents (목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발)

  • Seoyeon Kim;Miju Jo;Sunmin An;Jiyoon Park;Jiwon Park;Sungkook Hong;Jiwoo Kim;Juhoon Cha;Yujin Roh;Da Som Kim;Mi jin Jeon;Won-Jae Chi;Sook-Young Park
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.66-77
    • /
    • 2024
  • Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.

Isolation of Antagonostic Fungi to Phytophthora Capsici for Biological Control of Phytophthora Blight of Red-Pepper (고추역병의 생물학적 방제를 위한 길항진균의 분리)

  • 이용세;전하준;김상달
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • For isolation of antagonistic fungi antagonistic to Phytophthora capsici, a total of 157 isolates of fungi were screened from soil. Among the 157 isolates further screened by the dual culture test on potato dextrose agar and V-8 juice agar, 16 isolates were tested to show their antagonistic activity against P. capsici and Fusarium oxysporum. Fungal cul-ture filtrates of screened 16 isolates were shown to inhibit germination of zoospoorangia of P. capsici entirely and conidia of F. oxysporum considerably. Antagonistic fungi were shown to suppress of P. capsici infection of red-pepper plants maintained in the green house. Four isolates. 27 J5, 37 J10, 36 J13 and 31 K10, with the reduced disease incidence 53.3∼60.0% were identified as Fusarium sp. (27 J5). Trichoderma sp. (37 J10, 36 J13) and Penicillium sp. (31 K10).

  • PDF

Isolation of Erythritol Producing Microorganisms from Nature (자연계로부터 Erythritol 생산 균주의 분리)

  • 이광준;주영란;이길웅;오경수;이윤진;박상희;임재윤
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.38-42
    • /
    • 1997
  • For the purpose of obtaining microorganisms producing high amount of erythritol, the screening test was carried out. Productivity of erythritol was analyzed by paper chromatography and HPLC' methods. Among more than two hundred isolates, one strain(KJX1) was selected as an erythritol prtducer from thc soil of corn shock. The isolated strain was identified as Pmicilliurn sp. KJ81 from the morphological and physiological characteristics. Penicillium sp. KJ81 showed white to green colony color, two- to three-stage branching conidiophcvc and flask-shaped phialides.

  • PDF

Morphological and Molecular Identification of Penicillium islandicum Isolate KU101 from Stored Rice

  • Oh, Ji-Yeon;Kim, Eui-Nam;Ryoo, Mun-Il;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.469-473
    • /
    • 2008
  • We have previously obtained a representative isolate KU101 of the predominant Penicillium species from rice under indoor storage conditions. In this study we attempted to characterize isolate KU101 using its morphological and molecular characteristics. When the micro- and macroscopic characteristics of isolate KU101 were compared with the P. islandicum reference isolate KCCM 34763, isolate KU101 was generally identical to those of isolate KCCM 34763, however, isolate KU101 grew faster and produced more orange to red pigments than isolate KCCM 34763. In a molecular-based identification, the nuclear sequence of the ITS1-5.8S-ITS2 region of isolate KU101 was most closely related to that of P. islandicum. Therefore, these results indicated that isolate KU101 from stored rice could be identified as P. islandicum, some isolates of which are known to produce mycotoxins.

Two Species of Penicillium Associated with Blue Mold of Yam in Korea

  • Kim, Won-Ki;Hwang, Yong-Soo;Yu, Seung-Hun
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.217-221
    • /
    • 2008
  • During 2007 survey of post-harvest diseases of yam performed in May and June, severe tuber loss caused by blue mold was observed in Iksan, Cheonbuk Province. Two species of Penicillium were isolated from the infected tubers. Based on $\beta$-tubulin gene sequence analysis, and cultural and morphological characteristics, the isolates were identified as Penicillium sclerotigenum and P. polonicum. P. sclerotigenum, which is a novel to Korea, is presently described and illustrated.

A New Record of Penicillium cainii from Soil in Korea

  • Deng, Jian Xin;Ji, Seung Hyun;Paul, Narayan Chandra;Lee, Ji Hye;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.112-115
    • /
    • 2013
  • Twenty Penicillium isolates were recovered during the investigation of fungal community in the soil samples collected from Wando (Jeonnam Province, Korea). Among them, one species was identified and described as P. cainii based on phylogentic analysis of internal transcribed spacer and ${\beta}$-tubulin (BT2) genes and morphological characteristics. This is a first report of P. cainii in Korea.

L-phenylalanine ammonia-lyase activity of fungi, yeasts and streptomyces (Fungi, 이스트, 그리고 streptomyces에서 L-phenylalanine ammonia-lyase의 활성도 비교)

  • 장지영;구양모;김공환
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.270-277
    • /
    • 1988
  • Microorganisms isolated from soil (150 strains), fungi (39 strains), yeasts (9 strains) and Streptomyces species (39 strains) were assayed for L-phenylalanine ammonia-lyase(PAL) activity. 17 strains of fungi and 46 strains of soil isolates were proved to produce PAL, Aspergillus panamensis, Penicillium varioti and 11 soil isolates showed comparatively large PAL activity. When PAL activity was assayed with cell-free extracts of these 13 strains and 7 strains of Rhodotorula and Rhodosporidium geni, Rhodosporidium toruloides (IFO 0559) showed the highest PAL activity with 0.333 units per g of the wet cell weight.

  • PDF

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.210-214
    • /
    • 2005
  • More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus.

IAA-Producing Penicillium sp. NICS01 Triggers Plant Growth and Suppresses Fusarium sp.-Induced Oxidative Stress in Sesame (Sesamum indicum L.)

  • Radhakrishnan, Ramalingam;Shim, Kang-Bo;Lee, Byeong-Won;Hwang, Chung-Dong;Pae, Suk-Bok;Park, Chang-Hwan;Kim, Sung-Up;Lee, Choon-Ki;Baek, In-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.856-863
    • /
    • 2013
  • Application of rhizospheric fungi is an effective and environmentally friendly method of improving plant growth and controlling many plant diseases. The current study was aimed to identify phytohormone-producing fungi from soil, to understand their roles in sesame plant growth, and to control Fusarium disease. Three predominant fungi (PNF1, PNF2, and PNF3) isolated from the rhizospheric soil of peanut plants were screened for their growth-promoting efficiency on sesame seedlings. Among these isolates, PNF2 significantly increased the shoot length and fresh weight of seedlings compared with controls. Analysis of the fungal culture filtrate showed a higher concentration of indole acetic acid in PNF2 than in the other isolates. PNF2 was identified as Penicillium sp. on the basis of phylogenetic analysis of ITS sequence similarity. The in vitro biocontrol activity of Penicillium sp. against Fusarium sp. was exhibited by a 49% inhibition of mycelial growth in a dual culture bioassay and by hyphal injuries as observed by scanning electron microscopy. In addition, greenhouse experiments revealed that Fusarium inhibited growth in sesame plants by damaging lipid membranes and reducing protein content. Co-cultivation with Penicillium sp. mitigated Fusarium-induced oxidative stress in sesame plants by limiting membrane lipid peroxidation, and by increasing the protein concentration, levels of antioxidants such as total polyphenols, and peroxidase and polyphenoloxidase activities. Thus, our findings suggest that Penicillium sp. is a potent plant growth-promoting fungus that has the ability to ameliorate damage caused by Fusarium infection in sesame cultivation.

Survey of Egg- and Cyst-parasitic Fungi of Potato Cyst Nematode in Indonesia

  • Indarti, Siwi;Widianto, Donny;Kim, Young-Ho;Mulyadi, Mulyadi;Suryanti, Suryanti
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.32-36
    • /
    • 2010
  • Twelve fungal isolates out of 123 isolates obtained from cysts and soils of potato cyst nematode (PCN)-infested fields in Central Java, Indonesia had parasitic abilities of over 50% on PCN eggs or females (cysts) in vitro pathogenicity tests. Cultural and morphological characters and DNA sequences of ribosomal genes in ITS region revealed that they were four isolates of Gliocladium (Trichoderma) virens, three isolates of Fusarium oxysporum, one of F. lateritium, one of Penicillium tritinum and two of Taralomyces spp. A hundred percent infections occurred in eggs or cysts by three fungal isolates G. virens, F. oxysporum and P. oxalicum, suggesting that these fungi may have a good potential for the PCN biocontrol. Especially, G. virens isolates, which occurred most frequently in the PCN-infested potato fields and are known to be highly adaptable to varying habitats, may be developed as reliable agents for controlling PCN with both egg- and cyst-parasitic capabilities and with high ecological adaptabilities.