• Title/Summary/Keyword: Penicillium hirsutum

Search Result 8, Processing Time 0.031 seconds

Postharvest biological control of garlic blue mold rot caused by Pantoea agglomereans and its mode of action

  • Kwon, Mi-Kyung;Kim, Yong-Ki;Shim, Hong-Sik;Park, Kyung-Suk;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.104.1-104
    • /
    • 2003
  • To screen for potential biocontrol agents against postharvest disease of garlics caused by Penicillium hirsutum, a total of 933 isolates (432 fungi and 501 bacteria) were isolated from the rhizoshere or rhizoplane of garlics. Among them, Pantoea agglomerans isolate 59-4 (Pa 59-4) was selected for a potential biocontrol agent by in vivo wounded garlic bulb assay, When the spore suspension (10$\^$5/ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with spore or cell suspension of each fungal or bacterial isolate on wounded garlics, the isolate highly suppressed disease development. Soaking garlic bulbs in the suspension of Pa 59-4 significantly reduced garlic decay from p. hirsutum. However, Pa 59-4 did not inhibit the mycelial growth of P. hirsutum in dual-culture with P. hirsutum on Tryptic soy agar. In order to elucidate mode of action of Pa 59-4 nutrient competition between Pa 59-4 and P. hirsutum was investigated using tissue culture plates with cylinder inserts containing defusing membrane reported by Janisiewicz et al. The results showed that Pa 59-4 effectively suppressed spore germination and mycelial growth of blue mold in the low concentration (0.5%) of garlic juice, but did not suppress those of blue mold in the higher concentration (5%) of garlic juice. This result suggests that the mechanism in biocontrol of garlic blue mold by Pa 59-4 may involve in nutrient competition with P. hirsutum on garlic bulbs.

  • PDF

Antifungal activity of pesticides to control dry rot and blue mold during garlic storage (마늘 저장 중 마름썩음병과 푸른곰팡이병 억제를 위한 농약의 살균활성)

  • You, Oh-Jong;Lee, Yong-Hoon;Jin, Yong-Duk;Kim, Jin-Bae;Hwang, Se-Gu;Han, Sang-Hyun;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • The major fungal diseases which effecting garlic storage are blue mold and dry rot, caused by Penicillium hirsutum and Fusarium oxysporum, respectively. In order to reduce the damage by the pathogenic fungi, here we report the effects of 11 fungicides tested to reduce spoilage during storage of garlics. In the in vitro antimicrobial activity test, the fungicides, diphenylamine, prochloraz and tebuconazole showed 0.3, 2.2, and 1.3 nun inhibition zone to F. oxysporium, and cyprodinil, diphenylamine, fenbuconazole, hexaconazole, penconazole, prochloraz, propiconazole, pyrimethanil and tebuconazole exhibited 0.2, 2.4, 0.8, 0.4, 1.2, 1.5, 1.2, 0.4 and 1.5 mm to P. hirsutum, respectively. To test the in vivo control effect, when the diphenylamine, prochloraz, and tebuconazole were treated by standard concentration, the fungal mycelium of F. oxysporium started to grow 5 days after inoculation, and 80, 63.3 and 83.3% of the inoculated cloves are infected 11 days after inoculation. When the tebuconazole were treated by standard concentration, the P. hirsutum was completely inhibited the growth of the fungi. In case of diphenylamine, penconazole and propiconazole treatment, the P. hirsutum was observed 7 days after inoculation and $20{\sim}23.3%$ of the cloves were infected 11 days after inoculation. When cyprodinil, prochloraz and pyrimethanil were treated, pathogens occurred 5 days after inoculation and $60{\sim}100%$ of the cloves infected 11 days after inoculation. Three fungicides such as diphenylamine, prochloraz and tebuconazole also suppressed remarkably the infection and growth of F. oxysporium and P. hirsutum on garlic when both of the pathogens are inoculated after the garlic cloves were dipped for 10 min in the suspension of each agrochemical. Overall, diphenylamine, prochloraz and tebuconazole showed effective control efficacy on dry rot and blue mold There was significant correlation between in vitro and in vivo assay in diphenylamine and prochloraz to F. oxysporum and cyprodinil, prochloraz and pyrimethanil to P. hirsutum.

Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro

  • Li, Zhi-Fang;Wang, Ling-Fei;Feng, Zi-Li;Zhao, Li-Hong;Shi, Yong-Qiang;Zhu, He-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1149-1161
    • /
    • 2014
  • Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. However, no significant difference in the abundance of isolated endophytes was found among resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and susceptible ones had similar endophytic fungal population compositions. In three Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem tissue endophytic communities (0.702) was comparatively more uniform than the other two tissues. Eighty endophytic fungi selected from 27 genera were evaluated for their inhibition activity against highly virulent Verticillium dahliae isolate Vd080 in vitro. Thirty-nine isolates exhibited fungistasis against the pathogen at varying degrees. Seven species, having high growth inhibition rates (${\geq}75%$), exhibited strong antifungal activity against V. dahliae. The antifungal activity of both volatile and nonvolatile metabolites was also investigated. The nonvolatile substances produced by CEF-818 (Penicillium simplicissimum), CEF-325 (Fusarium solani), CEF-714 (Leptosphaeria sp.), and CEF-642 (Talaromyces flavus) completely inhibited V. dahliae growth. These findings deepen our understanding of cotton-endophyte interactions and provide a platform for screening G. hirsutum endophytes with biocontrol potential.

Phylogenetic Analysis, Morphology and Pathogenicity of Penicillium spp. associated with Blue Mold of Apple in Korea (사과푸른곰팡이병에 관여하는 Penicillium의 계통분석, 형태 및 병원성)

  • Sang, Hyun-Kyu;Choi, Young-Phil;Yu, Seung-Hun
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.341-350
    • /
    • 2010
  • Blue mold is the most important postharvest disease of apples in Korea. Apple fruits with blue mold symptoms were collected from storages in different locations in Korea and were investigated for their association with Penicillium species. A total of sixty five isolates of Penicillium were sampled from the collected apples. Based on DNA sequence analysis of ${\beta}$-tublin gene and ITS and lsu rDNA (ID region) and morphological characteristics, they were identified as P. crustosum, P. expansum, P. italicum, P. solitum and P. sp.. P. sp. which is closely related to P. hirsutum is a new species, not reported before. P. expansum (35%) was predominant species followed by P. crustosum. The phylogenetic tree inferred from combined ${\beta}$-tublin and ID region sequence showed good correlation with species that are defined by morphological characteristics. In pathogenicity test, apples were wound-inoculated with conidial suspension and incubated at $20-22^{\circ}C$. The most severe and destructive species was P. expansum. The species caused a decayed area 42-50mm in diameter after 8-10days. Decayed area caused by P. crustosum and P. sp. was 26-32mm and 20-26mm, respectively. This is the first record of P. crustosum, P. italicum and P. sp. from apple in Korea.

Fungicidal Effect of Slightly Acidic Hypochlorous Water against Phytopathogenic Fungi (미산성 차아염소산수의 식물병원균류에 대한 살균 효과)

  • Song, Jeong Young;Kim, Narae;Nam, Myeong Hyeon;Park, BeomJin;Whang, Eui-Il;Choi, Jong Myung;Kim, Hong Gi
    • The Korean Journal of Mycology
    • /
    • v.41 no.4
    • /
    • pp.274-279
    • /
    • 2013
  • Slightly acidic hypochlorous water (SAHW) is well known for having a powerful and broad spectrum antimicrobial activity, and is harmless to the environment and humans. SAHW (pH 5~6.5, 20~30 ppm available chlorine concentration) was generated by electrolysis of dilute solution of HCl (4%) in a chamber of a non-membrane electrolytic cell. Our objective was to determine SAHW has a potential fungicidal activity on some phytopathogenic fungi. Spores of Botrytis cinerea, Colletotrichum acutatum and Phytophthora capsici were not culturable on agar media at approximately 10 seconds after treatment by SAHW. However, inactivation of Penicillium hirsutum was required over 3 min. Dilution of SAHW with sterilized distilled water (SDW) at the ratio of 1:1 (SAHW:SDW) against C. acutatum showed 100% inactivation but, the efficacy in 1:2 decreased until 63.2%. Control value of SAHW was 70.4% against C. acutatum on pepper fruits when applied upto 24 h postinoculation. SAHW has a powerful and wide spectrum antifungal activity and could be applied as a potential alternative to fungicidal agent for control of plant disease.

Elucidation of Mode of Action of Pantoea agglomerans 59-4 for Controlling Garlic Blue Mold (마늘 푸른곰팡이병 방제용 Pantoea agglomerans 59-4의 억제기작 해석)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Yeh, Wan-Hae;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • To screen for potential biocontrol agents against postharvest disease of garlics caused by Penicillium hirsutum, a total of 1292 isolates were isolated from the rhizoshere or rhizoplane of Allium species. Among them, S59-4 isolate was selected as a potential biocontrol agent by in vivo wounded garlic bulb assay. The isolate was identified as Pantoea agglomerans (Pa59-4) through Biolog system. Pa59-4 did not inhibit the mycelial growth of P. hirsutum in dual-culture with P. hirsutum on tryptic soy agar. In order to elucidate mode of action of Pa59-4 on biological control, nutrient competition between Pa59-4 and P. hirsutum was investigated by the simple method using tissue culture plates with cylinder inserts containing defusing membrane reported by Janisiewicz et al. (2000). The results showed that Pa59-4 effectively suppressed spore germination and mycelial growth of blue mold in the low concentration (0.5%) of garlic juice, but it did not suppress those of blue mold in the high concentration (5%) of garlic juice. This result suggests that the mechanism in biocontrol of garlic blue mold by Pa 59-4 may be involved in nutrient competition with P. hirsutum on garlic bulbs.

Biological Control of Garlic Blue Mold using Pantoea agglomerans S59-4 (Pantoea agglomerans S59-4를 이용한 마늘 푸른곰팡이병의 생물학적 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2010
  • S59-4 isolate was evaluated as a potential biocontrol agent using in vivo wounded garlic bulb assay. When the spore suspension ($10^5$ spores/$m\ell$) of Penicillium hirsutum was co-inoculated with cell suspension of S59-4 isolate on wounded garlics, the isolate showed high suppressive effect to disease development. The isolate was identified as Pantoea agglomerans S59-4(Pa59-4) through Biolog system. Furthermore, soaking garlic bulbs in the suspension of Pa59-4 significantly reduced garlic decay caused by P. hirsutum. The optimal concentration of Pa59-4 for controlling garlic blue mold was $10^7\sim10^8$ cfu/$m\ell$. And suppressive effect of Pa59-4 on garlic storage decay reduced as inoculation concentration of Penicillium hirsutum increased. In addition in order to investigate population dynamics of Pa59-4 on application site of garlic cloves, two antibiotic markers, pimaricin and vancomycin were selected. Bacterial density of Pa59-4 on the wounded garlic cloves increased continuously both under room temperature condition and low temperature condition until 30days after application of Pa59-4, meanwhile that of Pa59-4 on intact garlic cloves increased until 15days after application of Pa59-4 and thereafter decreased continuously. Two culture media for mass-production of Pa59-4, LB medium and TSB medium, were selected. By-product of bio-fungicide formulated by mixing white carbon and bacterial suspension of Pa59-4 suppressed by 40 to 50% garlic blue mold. Above results suggest that Pa59-4 be a promising control agent against garlic blue mold.

Cultural and chemical approaches for controlling postharvest diseases of garlics (마늘 저장병 방제를 위한 경종적, 화학적 접근)

  • Kim, Yong-Ki;Lee, Sang-Bum;Lee, Sang-Seob;Shim, Hong-Sik;Choi, Inn-Hoo
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.139-148
    • /
    • 2003
  • The purpose of this study was to investigate damages of garlics occurred under cold storage and farmhouse storage condition, influence of cultural and environmental factors on storage spoilage of garlics, and to establish control strategies to reduce damages occurred under storage of garlics. Decays of garlics were highly related with cultural condition (paddy field or upland soil), ventilation, storage temperature and relative humidity, continuous cropping years, and harvesting stage. Early-harvested garlics were more decayed than late-harvested garlics. Garlics cultivated on paddy field were less decayed than ones cultivated on upland soil under farmhouse storage condition. The densities of Penicillium spp. and Fusarium spp. were higher on plot with long term continuous cropping cultivation history than on plot with short term continuous cropping cultivation history. However there is no relation between continuous cropping years and percent of decay of garlics. As a result of investigating influence of environmental factors on decay of garlics, P. hirsutum caused severe spoilage under high relative humidity condition, while F. oxysporum and Stemphyllium botryosum were not related with relative humidity. The three postharvest pathogens grew well above woe. In addition when P. hirsutum and S. botryosum were cultured for two months, they grew even at $-1^{\circ}C$. Except for environmental factors, wounds occurred through farming works. had an effect on storage spoilage of garlics. Garlics only hurt with a toothpick without inoculation of pathogens were decayed more severe than those inoculated with pathogens without wounds. Seven agro-chemicals showed highly suppressive effect were selected by measuring mycelial growth of three major pathogens of garlics on potato dextrose agar amended with 0.1% (v/v) of each fungicide. When they were foliar-sprayed on garlics 30 days before harvesting, it was confirmed that they suppressed storage spoilage of garlics. Also when garlics were sprayed with and drenched into the suspension of Benoram WP very after harvesting garlics, garlic damages by postharvest pathogens were reduced remarkably.