• Title/Summary/Keyword: Penicillium digitatum

Search Result 20, Processing Time 0.029 seconds

p-Anisaldehyde Exerts Its Antifungal Activity Against Penicillium digitatum and Penicillium italicum by Disrupting the Cell Wall Integrity and Membrane Permeability

  • Che, Jinxin;Chen, Xiumei;Ouyang, Qiuli;Tao, Nengguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.878-884
    • /
    • 2020
  • Penicillium digitatum and P. italicum are the two important postharvest pathogens in citrus, causing about 90% of the total loss of citrus fruit during storage and transportation. Natural fungicides such as essential oils have been widely used instead of chemical fungicides for preventing and controlling postharvest diseases. In this research, p-anisaldehyde exhibited a strong inhibitory effect on P. digitatum and P. italicum, with the minimum inhibitory concentration and minimum fungicidal concentration values of both being 2.00 μl/ml. Additionally, p-anisaldehyde visibly inhibited both the green mold and blue mold development of citrus fruits inoculated with P. digitatum and P. italicum. The mycelia morphologies of these pathogens were greatly altered, and the membrane permeability and cell wall integrity of mycelia were severely disrupted under p-anisaldehyde treatment. These results suggest that the antifungal activity of p-anisaldehyde against P. digitatum and P. italicum can be attributed to the disruption of the cell wall integrity.

Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum (감귤저장병 병원균 Penicillium digitatum 방제를 위한 길항 내생세균 Bacillus velezensis CB3의 분리 및 특성 규명)

  • Lee, Ji-Hyun;Seo, Mun-Won;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2012
  • In order to develop environment friendly fungicide for the control of citrus green mold (Penicillium digitatum) using endophytic bacteria, the 21 bacterial isolates were isolated from citrus leaves in seven different orchards in Jeju Province. Among the 21 bacterial isolates, 5 bacterial isolates presented antifungal activity against green mold pathogen P. digitatum. The CB3 isolate, which showed the most strong antagonistic effect, was selected through opposite culture against the pathogen. The rod-shaped, gram-positive bacterium CB3 was identified as Bacillus velezensis based on morphological, physiological characteristics, 16S rDNA, and gyr A gene sequence analysis. The isolate CB3 showed strong antifungal activity against two citrus postharvest pathogen P. digitatum. Citrus fruits were treated by wound inoculation with P. digitatum pathogen, and the control efficacy of CB3 culture broth was 66.7% ($1{\times}10^8$ cfu/ml). In conclusion, The stability of CB3 and its strong antifungal activity also lead us to believe that it has potential for application as an environment friendly biological control agent.

Protective Effect of Iminoctadine tris(albesilate) and Kresoxim-methyl Fungicides to Citrus Postharvest Diseases caused by Penicillium spp. (저장 감귤의 부패에 관여하는 Penicillium spp.에 대한 Iminoctadine tris(albesilate)와 Kresoxym-methyl의 방제 효과)

  • Hyun, Jae-Wook;Lee, Seong-Chan;Ihm, Yang-Bin;Kim, Dong-Hwan;Ko, Sang-Wook;Kim, Kwang-Sik
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2001
  • The biological effects of the iminoctadine tris (albesilate) and kresoxim-methyl for the protection of citrus postharvest diseases caused by penicillium spp. were assayed. In vitro tests, $EC_{50}$ values of iminoctadine tris(albesilate) were $0.01{\sim}0.02\;and\;0.01{\mu}g$ a.i./mL against mycelial growth of P. italicum and P. digitatum, respectively, but iminoctadine tris(albesilate) at $0.64{\mu}g$ a.i. /mL inhibited a little mycelial growth of unknown Penicillium sp. which produced another symptom different to blue and green mold caused by P. italicum and P. digitatum, respectively. And against germination and growth of germ tube of P. italicum and P. digitatum, $EC_{50}$ value of iminoctadine tris(albesilate) was $0.0013{\sim}0.0025{\mu}g$ a.i./mL. But spore germination of unknown Penicillium spp. was not nearly inhibited at $0.2{\mu}g$ a.i./mL. $EC_{50}$ values of kresoxim-methyl were $0.08{\sim}0.16$, 0.04 and $0.16{\mu}g$ a.i./mL against mycelial growth of P. italicum, P. digitatum and unknown Penicillium sp., respectively, and $0.04{\sim}0.08{\mu}g$ a.i./mL and $0.01{\sim}0.02{\mu}g$ a.i./mL against germination and growth of germ tube of P. italicum and unknown Penicillium sp., and P. digitatum, respectively. Iminoctadine tris(albesilate) and kresoxim-methyl were markedly effective to control the postharvest disease by 7 days spray prior to harvest. When the fruits were sprayed with iminoctadine-tris(albesilate) ($200{\mu}g$ a.i./mL) and kresoxim-methyl ($155{\mu}g$ a.i./mL) 7 days prior to harvest and subsequently stored for 90 days, the percentage of diseased fruit by Penicillium spp. was $3.6{\pm}1.8%$ in treatment of kresoxim-methyl and $5.9{\pm}1.8%$ in iminoctadine-tris(albesilate), respectively. On the other hand, tile percentage of diseased fruit was relatively high, $20.3{\pm}10.0%\;and\;19.5{\pm}9.6%$ in thiophanate-methyl ($700{\mu}g$ a.i./mL) and non-treatment, respectively. Maximum residue amount (ppm) among fruits (flesh and peel) assayed 0, 30, 60 and 90 days after storage was 0.45 and 0.10 ppm in treatment of kresoxim-methyl and iminoctadine, respectively.

  • PDF

Histological Detection of Phytoalexin Scoparone from Heat-Treated and UV-Illuminated Lemon Fruits After Inoculation with Penicillium digitatum

  • Kim, Jong-Jin;Yehoshua, Shimshon-Ben
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.271-275
    • /
    • 2001
  • Phytoalexin scoparone (6,7-dimethoxycoumarin) was induced in flavedo tissue of lemon fruit inoculated with Penicillium digitatum during heat treatment for 3 days at $36^{\circ}$. The compound was also induced in the flavedo tissue after UV illuminatiion. Induction of scoparone was deteected in the flavedo tissue by histological analysis. This fluorescent scoparone accumulated only on the 4-5 layers of cells adjacent to the inoculation site. Preinoculation with P. digitatum and subsequent heat-treatment induced resistance in the lemon fruit tissues after challenge-inoculation at the site of the first infection. the data obtained in the study suggest that lemon fruit acquired resistance against P. digitatum parallel with the scoparone production at the infection site.

  • PDF

Diseases and the Symptoms Recently Occurred on 'Shiranuhi' Citrus Cultivar in Jeju Island (최근 부지화 감귤 품종에 발생하는 식물병의 종류 및 그 증상)

  • Hyun, Jae-Wook;Kim, Dong-Hwan;Kim, Kwang-Sik;Lee, Seong-Chan;Ko, Sang-Wook;Lim, Han-Cheol
    • Research in Plant Disease
    • /
    • v.10 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • 'Shiranuhi' citrus cultivar bred by crossing 'Kiyomi' tangor and 'Nakano No.3' ponkan is cultivated in polyethylene film house, and the number of cultivating farmers is rapidly increasing in recent years. Recently, some diseases are taking place on 'Shiranuhi' fruit in some orchards, and were to be big problem in some case. It was surveyed that six diseases were mainly taken place in 'Shiranuhi' cultivating orchards in Jeju Island. They were Phytophthora citrophthora, Alternaria sp., Penicillium digitatum, Botrytis cinerea, Diaporthe citri and Xanthomonas axonopodis pv. citri.

Soil Microorganism Degrading Polycaprolactone (Polycaprolactone을 분해하는 토양미생물)

  • Kim Mal-Nam
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.400-404
    • /
    • 2004
  • Polycaprolactone (PCL), a synthetic aliphatic polyester, was buried in activated sludge soil for 66 days at $27^\circ{C}$ and $37^\circ{C}$. The morphology of the surface of PCL film degraded by soil microorganisms was observed. Soil microorganisms degrading PCL were isolated and identified. Soil fungi and soil bacteria utilizing PCL as carbon or energy source were identified as Paecilomyces fumosoroseus KH27, Penicillium digitatum KH28, Fusarium solani KH29, Aspergillus sp. KH30 and Ochrobactrum anthropi KH31, respectively. Biodegradation test of PCL by the isolated strains showed that, P. digitatum KH28 exhibited the most PCL degrading activity at $27^\circ{C}$. However, at $37^\circ{C}$ O. anthropi KH31 showed higher degrading activity than the other soil microorganisms tested.

Practical Application of Dioscorea quinqueloba Extract for the Control of Citrus Green Mold (감귤 녹색곰팡이병 방제를 위한 천산용 추출물의 실용적 적용)

  • Lee, Ji Hyun;Kang, Sung Woo;Song, Jeong Young;Kim, Hong Gi
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.354-360
    • /
    • 2012
  • This study tested the antifungal compound obtained from a medicinal plant, Dioscorea quinqueloba Thunb., in order to search the possibility of practical application of this product in agriculture through evaluating its activity using the citrus fruits. The extract of D. quinqueloba Thunb., which has the strongest antifungal activity, was selected as a candidate among 101 plant extracts. Based on this examination concerning antifungal activity of the product on Penicillium digitatum in vitro, it was confirmed its effect of mycelial growth inhibition showed over 87% at 0.5 mg/ml concentration. This natural product showed the stability of the substance, as it was not significantly influenced by pH, temperature, or ultraviolet radiation. While citrus fruits were stored at room temperature, P. digitatum was inoculated into them in order to prepare a similar environmental conditions with epidemic occurrence of the mold. As the result of our investigation, the disease preventive effects of the active antifungal substance evidenced a 100% at 0.5 mg/ml. When the phytotoxicity of the selected natural product on citrus at 2 mg/ml was assessed, we noted no toxic effects. Based on the superior preventive effects from this natural product extracted from the plant, it is presumed to be very useful in agricultural applications for the control of green mold, P. digitatum, which has been occurred often the biggest problem in the storage of citrus fruits.

Morphological and Genetic Characterization of Penicillium spp. associated with post - harvest decay of fruits. (oral)

  • Oh, S.Y.;Yu, S.H.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.115.1-115
    • /
    • 2003
  • Post-harvest decay, caused by Penicillium spp. is a serious problem of fruits worldwide. Morphological characteristics and molecular markers were used to characterize 22 Penicillium isolates from apples, 18 isolates from pears, 60 from oranges and 18 from grapes and 23reference isolates representing related Penicillium spp. to assess their diversity and resolve their taxonomy. Based on morphological and physiological characteristics, the isolates were grouped as identical or very similar to P. digitatum, P. italicum, P. ulaiense or very similar to P. crustosum, P. expansum, P. solitum and unidentified Penicillium spp. Based on sequence comparisons of ITS region, variable site were presented within and among the species, but there variation were not correlated with the species. Cluster analyses of AP-PCR fragment patterns using UP and L45 primer and the -tubulin gene sequence, the Penicillium species were segregated into distinct groups. Particularly. the -tubulin partial sequence data provided support for species concepts based on morphological and physiological characteristics.

  • PDF

Survey and Control of the Occurrence of Mycotoxins from Post-harvest Fruits 1. Mycotoxins Produced by Pencillium Isolates from Apple Pear, Citrus and Grape (수확 후 과실류에 발생하는 진균독소의 탐색 및 방베 1. 사과, 배, 감귤, 포도에서 분리한 Penicillium이 생산하는 주요 진균독소)

  • 오소영
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.100-104
    • /
    • 1999
  • A total of 65 isolates of Penicillium were isolated from decayed post-harvest fruits of apple pear citrus and grape. The Penicillium species isolated from the apple were idnetified as P. aurantiogriseum and P. expansum those from the pear were P. crustosum and P. expansum and those from the grape were P. aurantiogriseum and P. expansum, From decayed citrus fruits. P. digitatum and P. italicum were isolated. Citrinin and patulin from these species in the YES(yeast extract sucrose) broth were extracted with ethyl acetate and purified by thin-layer chromatography(TLC) and high performance liquid chromatography(HPLC) Among 51 isolates of Penicillium from apple pear and grape 7 isolates produced citrinin 13 isolates produces patulin and 12 isolates produced citrinin and patulin also. All 14 isolates of Penicillium from citrus produced only patulin.

  • PDF

Quality Changes of Satsuma Mandarin during Storage by Storage Warehouse (저장고 형태에 따른 온주밀감의 저장 중 품질변화)

  • 김성학;임자훈;고정삼
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • Quality changes of satsuma mandarin (Citrus unshiu Marc. var. miyagawa) during storage by storage warehouse were investigated. Citrus were treated with 2000-folds diluted iminoctadime-triacetate solution and 1.5% chitosan with 0.5% CaCl$_2$ solution, and were at 30$\^{C}$ for 24 hr before storage. The citrus of about 12kg/26L plastic container were stored at room temperature, and at 4$\^{C}$ with 87% relative humidity. Decay ratio of citrus with precise temperature and humidity control were lower than the others during storage. Penicillium italicum Monilia candida Alternara citri, Mucor hiemalis, Phomopsis citri Botrytis cinerea, Phoma citricarpa Clomererella cingulata, Penicillium digitatum were identified as putrefactive microorganisms in citrus storage. Weight loss, moisture content of peel and flesh were decreased slowly during storage. 24% of original acid content were decreased at room temperature on 120 days storage, compared to 15∼18% loss on cold storage. Total sugar of citrus was decreased rapidly after 90 days, and vitamin C content were also decreased rapidly after 60 days during storage.