• Title/Summary/Keyword: Penetration behavior

Search Result 492, Processing Time 0.023 seconds

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.

Stress Behavior of PSG/SiN Film for Passivation in Semiconductor Memory Device (반도체 소자의 표면보호용 PSG/SiN 절연막의 스트레스 거동)

  • Kim, Yeong-Uk;Sin, Hong-Jae;Ha, Jeong-Min;Choe, Su-Han;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.46-53
    • /
    • 1991
  • The stress of PSG (Phosphosilicate glass), USG (Undoped-silicate grass) and SiN films, which are mainly used as passivation layers in semiconductor memory devices, deposited by CVD methods has been studied as a function of film thickness and holding time in air. The stress of the PSG film or the USG film is increased in tensile state with increasing film thickness. On the other hand the stress level of the SiN film in compressive stress does not change as film thickness changes. The stress of PSG film shows the drastic change from the tensile stress to the compressive stress after the film is left 2 days in air. FTIR spectra indicated that the stress variation was due to the penetration of water molecule. It looks possible to recover the stress of about $2.5{\times}{10^9}dyne/cm^2$ by annealing treatment at $300^{\circ}C$ for 20min. The total stress of multi-layered films having the PSG film is determined mainly by the stress variation of PSG layer with holding time. The total stress of multi-layered film appears to have a functional relationship with the stress in the thickness of each film. The resistance against stress-migration of sputtered Al line increases with increasing the tensile stress for the PSG film or the USG film.

  • PDF

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis (장기재령 FA 콘크리트에 대한 염화물 거동 및 확률론적 염해 내구수명 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • In this study, accelerated chloride diffusion tests were performed on OPC(Ordinary Portland Cement) and FA(Fly Ash) concrete considering three levels o f W/B(Water to Binder) ratio o n 1,095 curing days. The accelerated chloride diffusion coefficient and the passed charge were evaluated in accordance with Tang's method and ASTM C 1202, and the resistance performance to chloride attack improved over time. FA concrete showed excellent resistance performance against chloride penetration with help of pozzolanic reaction. As the result of the passed charge, FA concrete showed durability improvement, "low" grade to "very low" grade, but OPC concrete changed "moderate" grade to "low" grade at 1,095 curing days. After assuming the design variables used for durability design as normal distribution functions, the service life of each case was evaluated by the probabilistic analysis method based on MCS(Monte Carlo Simulation). In FA concrete, the increase of probability of durability failure was lower than that of OPC concrete with increasing time, because the time-dependent coefficient of FA concrete was up to 3.2 times higher than OPC concrete. In addition, the service life by probabilistic analysis was evaluated lower than the service life by deterministic analysis, since the target probability of durability failure was set to 10%. It is considered that more economical durability design will be possible if the mo re suitable target probability of durability failure is set for various structures through researches on actual conditions and indoor tests under various circumstances.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Frequency Sounding in Small-Loop EM Surveys (소형루프 전자탐사법에서의 주파수 수직탐사)

  • Cho In-Ky;Lim Jin-Taik
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.119-125
    • /
    • 2003
  • The small-loop electromagnetic (EM) technique has been used successfully for many geophysical investigations, particularly for shallow engineering and environmental surveys. In conventional small loop EM operating at small induction numbers, geometric sounding has been widely used because the depth of penetration of EM energy depends only on the source-receiver separation. Recently developed small loop EM system, however, measures the secondary magnetic field, $H^S$, at multiple frequencies with a fixed source-receiver separation and frequency sounding is tried actively. In this study, we analyzed the behavior of in-phase and quadrature components of ${H^S}_z$, for horizonal coplanar (HCP) configuration over two-layer models. Through this theoretical analysis, it was found that the in-phase component of ${H^S}_z$ is more suitable for frequency sounding than the quadrature component. But, the in-phase component of ${H^S}_z$ is too small to measure, especially in resistive and noisy environment like Korea. Using the fact that the quadrature component is much greater than the in-phase component and the difference of quadrature component of ${H^S}_z$ measured at two frequencies shows the same behavoir as the in-phase component, we suggested an alternative frequency sounding technique. Also, we defined an apparent conductivity, which reflects well the conductivity of subsurface layers.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

Variation of Hydrogen Residue on Metallic Samples by Thermal Soaking in an Inert Gas Environment (불활성 가스하 열건조에 따른 금속시험편의 수소잔류물 거동 분석)

  • Lee, Yunhee;Park, Jongseo;Baek, Unbong;Nahm, Seunghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • Hydrogen penetration into a metal leads to damages and mechanical degradations and its content measurement is of importance. For a precise measurement, a sample preparation procedure must be optimized through a series of studies on sample washing and drying. In this study, two-step washing with organic solvents and thermal soaking in inert gas were tried with a rod-shaped, API X65 steel sample. The samples were machined from a steel plate and then washed in acetone and etyl-alcohol for 5 minute each and dried with compressed air. After then, the samples were thermally soaked in a home-made nitrogen gas chamber during 10 minute at different heat gun temperatures from 100 to $400^{\circ}C$ and corresponding temperature range in the soaking chamber was from 77 to $266^{\circ}C$ according to the temperature calibration. Hydrogen residue in the samples was measured with a hot extraction system after each soaking step; hydrogen residue of $0.70{\pm}0.12$ wppm after the thermal soaking at $77^{\circ}C$ decayed with increase of the soaking temperature. By adopting the heat transfer model, decay behavior of the hydrogen residue was fitted into an exponential decay function of the soaking temperature. Saturated value or lower bound of the hydrogen residue was 0.36 wppm and chamber temperature required to lower the hydrogen residue about 95% of the lower bound was $360^{\circ}C$. Furthermore, a thermal desorption spectroscopy was done for the fully soaked samples at $360^{\circ}C$. Weak hydrogen peak was observed for whole temperature range and it means that hydrogen-related contaminants of the sample surface are steadily removed by heating. In addition, a broad peak found around $400^{\circ}C$ means that parts of the hydrogen residue are irreversibly trapped in the steel microstructure.

DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock (EPB-TBM 암반굴착시 스크류컨베이어의 배토 거동에 대한 DEM 기반 수치해석적 연구)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Huntae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Tunnel construction by TBMs should be supported by the performance of a screw conveyor in order to obtain the optimum penetration rate, so studies related to the screw conveyor performance have been being conducted. Compared to the study on the performance of the screw conveyor for the soil, however, the research on the performance of the screw conveyor for the rock is insufficient. Considering the domestic tunnel sites with more rock layers than soil layers, simulation of discharge of 6 types of rock chips by the screw conveyor was conducted using DEM. Regardless of the shape and volume of the rock chips, the discharge rates of the rock chips by the parallel placed screw conveyor at a speed of 10 RPM in the same rock mass were about 20% (standard deviation: 1.3%) of the maximum volume of discharge rate by the screw conveyor. It is expected that this study can be used as a reference material for screw conveyor design and operation in TBM excavations in rock masses.