• Title/Summary/Keyword: Penalty element

Search Result 133, Processing Time 0.021 seconds

A Practical Finite Element Analysis Model for Hydrostatic Extrusion of a Biaxial Bar (이중봉 정수압 압출의 실용적 유한요소해석 모델)

  • Yoon, S.H.;Park, H.J.;Kim, E.Z.;Lee, S.;Lee, J.;Lee, G.A.;Kim, Y.B.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • A new finite element model for the hydrostatic extrusion of a biaxial bar is introduced. In this model, a penalty contact algorithm, which is adopted to replace the traction boundary conditions due to the fluid in the container of the extruder, is incorporated into a consistent penalty finite element formulation for the viscoplastic deformation of a work piece during hydrostatic extrusion. Two parameters, introduced in the penalty contact algorithm in this study, a critical penalty contact pressure $P_0$ and a critical penalty contact distance $D_c$, are carefully examined for various process conditions. The proposed finite element model is applied to the hydrostatic extrusion of a Cu-clad Al bar. The extrusion loads and thickness ratios of the clad materials by the proposed model are compared in detail to values from experiments reported in the literature. Finally, it is concluded that the proposed finite element model is useful in practical implementations.

Bending Analysis of Mindlin-Reissner Plates by the Element Free Galerkin Method with Penalty Technique

  • Park, Yoo-Jin;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.64-76
    • /
    • 2003
  • In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner plates by using the element-free Galerkin method. A penalized weak form for the Mindlin-Reissner Plates is constructed through the exterior penalty method to enforce the essential boundary conditions of rotations as well as transverse displacements. In the numerical examples, some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the order of integration and the size of influence domain are also carried out. The effect of the types of background cells on the accuracy of numerical solutions is observed and a proper type of background cell for obtaining optimal accuracy is suggested. Further, optimal order of integration and basis order of Moving Least Squares approximation are suggested to efficiently handle the irregularly distributed nodes through the triangular type of background cells. From the numerical tests, it is identified that unlike the finite element method, the proposed element-free Galerkin method with penalty technique gives highly accurate solution without shear locking in dealing with Mindlin-Reissner plates.

A Coupled Finite Element Analysis of Independently Modeled Substructures by Penalty Frame Method

  • Maenghyo Cho;Kim, Won-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1201-1210
    • /
    • 2002
  • A penalty frame method is proposed for the coupled analysis of finite elements with independently modeled substructures. Although previously reported hybrid interface method by Aminpour et al (IJNME, Vol 38, 1995) is accurate and reliable, it requires non-conventional special solution algorithm such as multifrontal solver. In present study, an alternative method has been developed using penalty frame constraints, which results in positive symmetric global stiffness matrices. Thus the conventional skyline solver or band solver can be utilized in the solution routine, which makes the present method applicable in the environment of conventional finite element commercial software. Numerical examples show applicability of the present method.

A penalty rigid-plastic finite element method for prediction of stress distributions at the tool and workpiece interfaces in metal forming (소성가공중 금형과 가공체의 접촉면에 작용하는 응력의 예측을 위한 벌칙 강소성 유한요소법)

  • 황상무;전만수;박재성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.507-514
    • /
    • 1991
  • A penalty finite element method has been developed for accurately predicting stress distributions at the tool-workpiece interfaces. The basic formulation is described, with the emphasis on the algorithm to deal with the normal stress and the frictional stress at the interface. Comparison with the experimental data and the theoretical solutions found in the literature is made for the forming processes selected.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Element Free Galerkin Method applying Penalty Function Method

  • Choi, Yoo Jin;Kim, Seung Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-34
    • /
    • 1997
  • In this study, various available meshless methods are briefly reviewed and the connection among them is investigated. The objective of meshless methods is to eliminate some difficulties which are originated from reliance on a mesh by constructing the approximation entirely in terms of nodes. Especially, focusing on Element Free Galerkin Method(EFGM) based on moving least square interpolants(MLSI), a new implementation is developed based on a variational principle with penalty function method were used to enforce the essential boundary condition. In addition, the weighted orthogonal basis functions are constructed to overcome disadvantage of MLSI.

  • PDF

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

An Eulerian Finite Element Method for the Steady State Rolling/Extrusion of Sintered Powder Metals (소결분말재 정상상태 압연/압출공정의 오일러리안 유한요소해석)

  • ;;左野 利男
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.20-28
    • /
    • 1996
  • An Eulerian finite element method for the analysis of steady state rolling/extrusion of sintered powder metals is presented. Initial guess of the porosity distribution in an Eulerian mesh is obtained from the velocity and scaled pressure field computed by the Consistent Penalty finite element formulations-the standard one and the consistent penalty type one-are invoked for the analysis of strain hardening, dilatant viscoplastic deformation of porous metals. Comparisons of the predicted distributions of porosity to those by a Lagrangian finite element method and by experiments reported in the articles prove the effectiveness and validity of the proposed method.

  • PDF

A Comparative Study of the Incompressibility Constraint on the Rigid Plastic Finite Element Method (강소성 유한요소법에서 비압축성조건의 비교 연구)

  • 이상재;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • The governing functional in plastic deformation has to satisfy the incompressibility constraint. This incompressibility constraint imposed on velocity fields can be removed by introducing either Lagrange multiplier or the penalty constant into the functional. In this study, two-dimensional rigid plastic FEM programs using these schemes were developed. These two programs and DEFORM were applied in a cylinder upsetting and a closed die forging to compare the values of load, local mean stress and volume loss. As the results, the program using Lagrange multiplier obtained a more exact and stable solution, but it took more computational time than the program using the penalty constant. Therefore, according to user's need, one of these two programs can be chosen to simulate a metal forming processes.

  • PDF

A Study on Finite Element Analysis with Paraxial Boundary Conditions for Elastic Wave Propagation (탄성파 진행 문제를 위한 Paraxial 경계조건의 유한요소해석에 관한 연구)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.33-38
    • /
    • 2008
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. Paraxial boundary conditions(PBCs) which are kinds of absorbing boundary conditions based on paraxial approximations of the scalar and elastic wave equations not only lead to well-posed problem but also are stable and computationally inexpensive. But the complex mathematical forms of PBCs with partial derivatives complicate the application of those to finite element analysis. In this paper a penalty functional is newly proposed for applying PBCs into finite element analysis and the existence and uniqueness of the extremum of the proposed functional is demonstrated. The numerical verification of the efficiency is carried out through comparing PBCs with a viscous boundary condition.

  • PDF