• Title/Summary/Keyword: Peening Coverage

Search Result 11, Processing Time 0.021 seconds

Simulation of Surface Coverage Made by Impeller Type Shot-peening Machines (임펠러식 쇼트피닝 머신에 의한 표면 커버리지 시뮬레이션)

  • Shin, Ki-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2014
  • Shot-peening is frequently used on various mechanical parts because it can improve the fatigue life of components by generating compressive residual stresses on the surface. This can be done by repeatedly hitting the work-piece surface with small balls and making indentations on it. In fact, finding optimal peening time among various peening parameters is the most important. Under-peening can not improve the fatigue life sufficiently while over-peening causes cracks and reduces fatigue life in contrast. In general, optimal peening time is experimentally determined by measuring arc-height using Almen-strip in accordance with SAE J442 standard. To save the time and efforts spent in carrying out experiments to find optimal peening time, this paper presents a computer simulation algorithm for the estimation of surface coverage made by impeller type shot-peening machines (PMI-0608). Surface coverage is defined as the proportion of the work-piece surface that has been indented in a given time of shot-peening. An example (standard tensile test specimen) is presented to validate the proposed method.

The Study of Shot Peening Process Optimization for Reliability Improvement of an Aircraft Structural Part (항공용 구조물의 신뢰성 향상을 위한 숏피닝 공정 최적화 연구)

  • Nam, Yong-Seog;Jeong, Yoo-In;Kim, Hwa-Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • Purpose: There is active research that improves both reliability and fatigue life of structures which widely used in the aerospace fields of defense industry. The effects of three parameters (pressure, peening time, nozzle distance) on Almen intensity and coverage will be investigated by using the experimental and analyzed data. Methods: we employed a Box-Behnken design. Additionally, to verify the validity of the optimal condition obtained from experimental results, metallurgical analyses of the shot-peened aerospace part were conducted with respect to surface morphology, residual stress. Results: Optimal shot peening condition is determined as (distance, pressure, time) by optimizing simultaneously the two responses of intensity and coverage. At the optimal peening condition the prediction interval for Almen intensity is well within the required range. And, the validity of the condition was checked by using the real aerospace aluminum alloy plate. Conclusion: Shot peening introduces significant levels of compressive residual stress and induces improves both reliability and fatigue life of structures.

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

The Solution of Peening Residual Stress by Angled Impact of Multi Elliptical Shot Ball Based on Finite Element Analysis (유한요소해석에 기초한 다중 타원구 숏볼의 경사충돌에 의해 생성된 피닝잔류응력해)

  • Kim, Taehyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.151-156
    • /
    • 2017
  • Shot peening is widely used to improve the fatigue life and strength of various mechanical parts and an accurate method is important for the prediction of the compressive residual stress caused by this process. A finite element (FE) model with an elliptical multi-shot is suggested for random-angled impacts. Solutions for compressive residual stress using this model and a normal random vertical-impact one with a spherical multi-shot are obtained and compared. The elliptical multi-shot experimental solution is closer to an X-ray diffraction (XRD) than the spherical one. The FE model's peening coverage also almost reaches the experimental one. The effectiveness of the model based on an elliptical shot ball is confirmed by these results and it can be used instead of previous FE models to evaluate the compressive residual stress produced on the surface of metal by shot peening in various industries.

Study on the characteristics of shot peened material (쇼트피닝에 의한 재료의 특성에 관한 연구)

  • 이승호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

A Study on the Improvement of the Durability of Drive Plate in Automobiles by Shot Peening (쇼트피닝 가공에 의한 자동차용 Drive Plate의 내구성 향상)

  • Cheong Seongkyun;Lee Kookjin;Lee Dongsun;Lee Jaeheon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.191-196
    • /
    • 2005
  • The effects of shot peening on the fatigue strength of SK-5M steel is investigated by experiment. The shot peening process is investigated optimum peening condition by changing impeller speed and exposure time. Bending fatigue test is accomplished to investigate the effect of optimum peening condition on the fatigue characteristics. As exposure time is increased, fatigue life in high stress is increased in early stage, become the maximum from 60 to 100 seconds, and then is decreased. Observing fracture surface through SEM after fatigue test, we can see clear configuration of cracks and peening layer.

  • PDF

Effects of Shot Peening Time on Microstructure and Electrochemical Characteristics for Cu Alloy (쇼트피닝 시간에 따른 동합금의 조직특성 및 전기화학적 특성의 변화)

  • Han, Min-Su;Hyun, Koang-Yong;Kim, Seong-Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.545-551
    • /
    • 2013
  • In this study, shot peening technique was employed with shot peening time for durability improvement and surface modification of copper alloy to investigate the electrochemical characteristics and microstructural variations. As a result of shot peening, roughness was distributed over the surface, and homogenization phenomenon was observed with increasing shot peening time due to the enhancement of coverage. The results revealed that hardness increased for shot peened specimens and particularly 3.5 mins of shot-peening time represented a hardness improvement of 52 %, showing similar electrochemical characteristics to that of the un-peened surface.

Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Ko, Myung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.198-204
    • /
    • 2001
  • The shot peening is largely used for a surface treatment of metallic components where small spherical pellets called shots are blasted onto the surface with velocities up to 100 m/s. This treatment leads to improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance I the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is the measurement by X-ray diffractometer only. Despite the importance to automobile ad aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude ad distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

The Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Cho, Myoung-Rae;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF