• 제목/요약/키워드: Peel Strength

검색결과 343건 처리시간 0.029초

실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계 (A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength)

  • 전다영;문지연;박고등;오트곤게렐 줄만다크;남혜령;권오련;임현수;김성현
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향 (Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint)

  • 윤호철
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

FRP 선체구조용 접착제의 접착강도 평가 (Strength Evaluation for Adhesive Bonds of Adhesive with FRP Ship Body Structure)

  • 안석환;최한규;남기우
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.146-152
    • /
    • 2010
  • Recently, the applied frequency of composite materials was increased from the viewpoint of lightweight, high strength and low cost when a leisure boat and a fishing boatwere built. However, studies on the mechanical properties of composite material with ship are rare. Specially, a leisure boat and fishing boat with FRP had been built by hand lay-up method. However, the vacuum infusion method is rising recently for ship building. The manufactured these FRP plates were combined by using the adhesive. Therefore, in this study Cleavage peel strength, Shear strength and fatigue limit of adhesive bonds by tensileloading were estimated. From test results, the strengths of FRP specimens made by the vacuum infusion method are higher than that of the hand lay-up method.

기계적 프레스 접합의 최적접합조건에 관한 연구 (A Study on the Optimum Joining Condition in a Mechanical Press Joint)

  • 이용복;김태윤;정진성;최지훈
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.752-760
    • /
    • 2000
  • Mechanical press joining has been used in sheet metal joining processes because of its simple process and possibility of joining dissimilar metals, such as steel and aluminum. The strength of mechanical press joining varies with joining conditions. The optimum joining conditions considering tensile-shear and peel-tension strength have to be established to assure the reliability in the joining strength. Therefore, optimization of joining conditions has been investigated for improving joining strength of sheet metal. It is possible to obtain optimum strength from improvement on the joining strength of peel-tension mechanical press joint under multiaxial stress states.

Mechanical Properties and Density Profile of Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peels

  • Jung-Woo HWANG;Seung-Won OH
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권2호
    • /
    • pp.98-108
    • /
    • 2023
  • In this study, the boards were manufactured according to the mandarin peels addition rate using sawdust and mandarin orange peel. After that, the mechanical properties and density profile of ceramics prepared by conditions through resin impregnation process and carbonization process were investigated. The bending and compression strengths of ceramics tended to increase as the resin impregnation rate increased. When the resin impregnation rate was 70%, the highest values were 8.58 MPa and 14.77 MPa, respectively. Also, the mechanical properties of ceramics according to carbonization temperature showed the highest values at 1,200℃ for bending strength of 11.09 MPa and compression strength of 17.20 MPa. The bending strength and compression strength according to the mandarin peels addition rate showed the highest values at 8.62 MPa and 14.16 MPa, respectively, when the mandarin orange peel addition rate was 5%. The mechanical properties tended to decrease when the addition rate of mandarin orange was increased. The density profile of ceramics showed a similar tendency to the mechanical properties. It can be seen that the density distribution from the surface layer to the center layer is more uniform as the resin impregnation rate and carbonization temperature increase and the mandarin peels addition rate decreases.

탄성 의치상 이장재의 접착력에 관한 연구 (A STUDY ON THE BONDING STRENGTH OF RESILIENT DENTURE LINERS)

  • 이상훈;정재헌
    • 대한치과보철학회지
    • /
    • 제30권3호
    • /
    • pp.411-436
    • /
    • 1992
  • The purpose of this study was to assess the adhesion of resilient denture liners (such as, heat-cured silicone molloplast B,cold- cured silicone Mollosil) to polymethyl metacrylate (K-33) and metal (Megalloy) in the laboratory by peel test. The resilient denture lines were processed according to manufactures instruction, onto prepared specimens(original resin base plate, rough resin base plate, stippled metal plate, mesh metal plate ) 75mm long and 25m wide. And then, the peel test was performed by instron. The results were as follows : 1. The bonding strength of Mollosil was stronger than that of Molloplast B except the specimen of stippled metal plate. 2. The tensile strength of Mollosil was weaker than that of Molloplast Bas tearing of Mollosil was occured in the peel test. 3. Mesh metal plate had the highest bonding strength in the case of Molloplast B and Mollosil. But stippled metal plate have high bonding strength in the case of Molloplast B and have the lowest bonding strength in the case of Mollosil. 4. The bonding strength of rough resin base plate was stronger than that of original resin base plate in the case of Molloplast B and Mollosil. 5. The bonding strength of metal plates was stronger than that of resin base plates in the case of Molloplast B and Mollosil except the case of bonding strength between the stippled metal plate and Mollosil. 6. It seems that the Increase of surface and retention form of metal plate and resin base plate produces higher physical bonding strength.

  • PDF

불포화폴리에스테르 수지/실록산-에스테르 공중합체 블렌드의 표면특성 (Surface Properties of Unsaturated Polyester Resin/Siloxane-ester Copolymer Blends)

  • 장영욱;정용주;김동국;정진수
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.93-97
    • /
    • 1999
  • 불포화폴리에스테르 수지의 표면에너지를 저하시키기 위하여 실록산-에스터 공중합체를 소량 첨가하였다. 실록산-에스터 공중합체는 diol로써 ethylene glycol(EG)과 hydroxy terminated polydimethylsiolxane(PDMS)을, diacid로써 maleic anhydride (MA)와 phthalic anhydride (PA)를 축중합반응 시켜 합성하였다. 경화된 블렌드의 표면성질은 동적접촉각(dynamic contact angles)측정, 점착테이프의 peel 강도측정 및 X-ray photoelectron spectroscopy (ESCA)등을 통하여 분석하였다. 블렌드에서 공중합체의 첨가량이 증가하고, 공중합체내의 PDMS 함량이 증가함에 따라 물에 대한 advancing 접촉각 및 receding 접촉각이 증가하였으며, 점착테이프의 peel 강도는 급격히 감소하였다. ESCA 분석결과 실록산 세그멘트가 공기쪽 표면층에 주로 존재하고 있음을 알 수 있었다.

  • PDF

고온다습처리 조건이 무전해 니켈 도금 박막과 폴리이미드 사이의 계면 접착력에 미치는 영향 (Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion of Electroless-plated Ni on Polyimide)

  • 민경진;정명혁;이규환;정용수;박영배
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.675-680
    • /
    • 2009
  • Effects of $85^{\circ}C/85%$ Temperature/Humidity (T/H) treatment conditions on the peel strength of an electroless-plated Ni/polyimide system were investigated from a $180^{\circ}$ peel test. Peel strength between electroless-plated Ni and polyimide monotonically decreased from $37.4{\pm}5.6g/mm$ to $22.0{\pm}2.7g/mm$ for variation of T/H treatment time from 0 to 1000 hrs. The interfacial bonding mechanism between Ni and polyimide appears to be closely related to Ni-O bonding at the Ni/polyimide interface. The decrease in peel strength due to T/H treatment appears to be related to polyimide degradation due to moisture penetration through the interface and the bulk polyimide itself.

Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

  • Korkmaz, Fatih Mehmet;Bagis, Bora;Ozcan, Mutlu;Durkan, Rukiye;Turgut, Sedanur;Ates, Sabit Melih
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.287-295
    • /
    • 2013
  • PURPOSE. This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS. Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) ($75mm{\times}25mm{\times}3mm$). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion ($50{\mu}m$), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (${\alpha}$=.05). RESULTS. Denture liner tested showed increased peel strength after laser treatment with different parameters ($3.9{\pm}0.4-5.58{\pm}0.6$ MPa) compared to the control ($3.64{\pm}0.5-4.58{\pm}0.5$ MPa) and air-abraded groups ($3.1{\pm}0.6-4.46{\pm}0.3$ MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups ($3.1{\pm}0.6$ MPa). CONCLUSION. Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners.