• Title/Summary/Keyword: Pedestrian-vehicle Crash

Search Result 26, Processing Time 0.022 seconds

Analysis of the Characteristics of Road and Transportation Safety Facilities Affecting Pedestrian Traffic Accidents around School Zones: Using Spatial Poisson Model (어린이보호구역 내 도로 및 교통안전시설이 보행자 교통사고에 미치는 영향 분석: 공간포아송모형을 이용하여)

  • Ko, Dong-Won;Park, Seung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.213-223
    • /
    • 2021
  • It is very important to build a safe walking environment for children because children are more likely to be exposed to traffic accidents than adults due to their behavioral and physical characteristics. Therefore, this study analyzed the characteristics of road and transportation safety facilities that affect pedestrian traffic accidents around school zones using spatial poisson regression. The pedestrian-vehicle crash data in Seoul 2016-2018 was provided by the Traffic Accident Analysis System(TAAS). The main analysis results are as follow; First, the more intersections and the higher percentage of neighborhood roads in the school zone, the higher the risk of pedestrian traffic accidents. Second, the pedestrian push button was found to reduce the occurrence of pedestrian traffic accidents. Third, except for the pedestrian push button, none of the transportation safety facilities considered in this study were effective in reducing the risk of pedestrian traffic accidents. On the other hand, if not only the improvement of physical facilities but also non-physical factors such traffic safety education are supported, the effect for reducing traffic pedestrian traffic accidents in the school zone is expected to be further maximized.

Factor Analysis of Accident Types on Urban Street using Structural Equation Modeling(SEM) (구조방정식모형을 활용한 단속류 시설의 교통사고 유형별 유발요인 분석)

  • Kim, Sang-Rok;Bae, Yun-Gyeong;Jeong, Jin-Hyeok;Kim, Hyeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.93-101
    • /
    • 2011
  • In 2008, Korea has observed total 215,822traffic accidents Although the number has decreased since then, the crash rate is still higher than those of other advanced countries. In particular, high rate of pedestrian accidents occurred on urban streets is recognized as a serious problem. The previous studies, however, are not entirely considerate of accident factors by accident type. Inspired by the fact, this study analyzes factors affecting traffic accident by accident type. Using the accident data collected on urban streets in Seodaemun-gu, this paper classifies the accidents into two groups (i.e., vehicle-vs-vehicle and vehicle-vs-person crashes), and analyzes relationships between severity and exogenous variables. For the analysis, Structural Equation Modeling (SEM) is employed to estimate relationships among exogenous factors of traffic accident by each type on urban streets. The resulting model reveals that roadway related factors are highly correlated with the severity of vehicle-vs-vehicle crashes whereas environment factors are with vehicle-vs-person crashes.

Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms (머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구)

  • Kim, Seunghoon;Lym, Youngbin;Kim, Ki-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • Moving toward an aged society, traffic accidents involving elderly drivers have also attracted broader public attention. A rapid increase of senior involvement in crashes calls for developing appropriate crash-severity prediction models specific to senior drivers. In that regard, this study leverages machine learning (ML) algorithms so as to predict the severity of vehicle-pedestrian collisions induced by elderly drivers. Specifically, four ML algorithms (i.e., Logistic model, K-nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM)) have been developed and compared. Our results show that Logistic model and SVM have outperformed their rivals in terms of the overall prediction accuracy, while precision measure exhibits in favor of RF. We also clarify that driver education and technology development would be effective countermeasures against severity risks of senior driver-induced collisions. These allow us to support informed decision making for policymakers to enhance public safety.

Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal

  • Hilaire, Cameron St.;Johnson, Arianne;Loseth, Caitlin;Alipour, Hamid;Faunce, Nick;Kaminski, Stephen;Sharma, Rohit
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • Introduction: Facial fractures (FFs) occur after high- and low-energy trauma; differences in associated injuries and outcomes have not been well articulated. Objective: To compare the epidemiology, management, and outcomes of patients suffering FFs from high-energy and low-energy mechanisms. Methods: We conducted a 6-year retrospective local trauma registry analysis of adults aged 18-55 years old that suffered a FF treated at the Santa Barbara Cottage Hospital. Fracture patterns, concomitant injuries, procedures, and outcomes were compared between patients that suffered a high-energy mechanism (HEM: motor vehicle crash, bicycle crash, auto versus pedestrian, falls from height > 20 feet) and those that suffered a low-energy mechanism (LEM: assault, ground-level falls) of injury. Results: FFs occurred in 123 patients, 25 from an HEM and 98 from an LEM. Rates of Le Fort (HEM 12% vs. LEM 3%, P = 0.10), mandible (HEM 20% vs. LEM 38%, P = 0.11), midface (HEM 84% vs. LEM 67%, P = 0.14), and upper face (HEM 24% vs. LEM 13%, P = 0.217) fractures did not significantly differ between the HEM and LEM groups, nor did facial operative rates (HEM 28% vs. LEM 40%, P = 0.36). FFs after an HEM event were associated with increased Injury Severity Scores (HEM 16.8 vs. LEM 7.5, P <0.001), ICU admittance (HEM 60% vs. LEM 13.3%, P <0.001), intracranial hemorrhage (ICH) (HEM 52% vs. LEM 15%, P <0.001), cervical spine fractures (HEM 12% vs. LEM 0%, P = 0.008), truncal/lower extremity injuries (HEM 60% vs. LEM 6%, P <0.001), neurosurgical procedures for the management of ICH (HEM 54% vs. LEM 36%, P = 0.003), and decreased Glasgow Coma Score on arrival (HEM 11.7 vs. LEM 14.2, P <0.001). Conclusion: FFs after HEM events were associated with severe and multifocal injuries. FFs after LEM events were associated with ICH, concussions, and cervical spine fractures. Mechanism-based screening strategies will allow for the appropriate detection and management of injuries that occur concomitant to FFs. Type of study: Retrospective cohort study. Level of evidence: Level III.

A Study of the Roundabout Hump type Crosswalks Installation Criteria That Takes Into Account the Safety of Pedestrian Traffic (보행자 통행안전성을 고려한 회전교차로의 고원식횡단보도 설치기준 연구)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1075-1082
    • /
    • 2016
  • In order to calculate the optimum installation interval between a speed hump and hump type crosswalk that are installed continuously in succession, this study examined the speed of a vehicle that passes different intervals between speed humps and hump type crosswalks from the approach section of a roundabout having a maximum speed limit of 30km/h; analyzed the effects of speed humps and hump type crosswalks installed continuously in succession on vehicle driving speed; and simulated the optimum installation height of hump type crosswalk. As a result, the following conclusion was drawn. First, it was found that the optimum interval between a speed hump and hump type crosswalk, which are the representative traffic calming techniques for reducing vehicle speed, to control vehicle speed under 30km/h is 30m. Second, as a result of comparing the deceleration of a vehicle that pass hump type crosswalks, it was found that if the installation interval is 65 m and above, a speed hump and hump type crosswalk had no effect. Therefore, it is desirable that the maximum installation interval between a speed hump and hump type crosswalk for controlling vehicle speed within a fixed road section should not exceed 65m. Third, the analysis showed that the optimum installation height of hump type crosswalk is 6-8cm in case vehicle speed at the approach section is 20km/h or lower, 8-10cm in case of 30km/h, and 10cm in case of 30km/h or higher, respectively. Fourth, even at a road section on which a speed hump and hump type crosswalk are installed, speed reduction effects may sometimes be insignificant due to a driver's studying effect, traffic conditions and so on. Thus, it is judged that speed reduction effects will be greater if several traffic calming techniques such as speed hump, chicane, and choker are applied at the same time. Therefore, in case of applying traffic calming techniques for the purpose of reducing vehicle speed in order to promote pedestrian safety, the composite application of several techniques should be considered.

The Comparative Study on Travel Behavior and Traffic Accident Characteristics on a Community Road - With Focus on Seoul Metropolitan City (생활도로에서의 교통행태와 교통사고특성에 관한 연구 - 서울특별시를 중심으로)

  • Lim, Joonbeom;Lee, Sooil;Choi, Jongchul;Joo, Sungkab
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.97-104
    • /
    • 2016
  • In Korea, the number of crash accident victims per 100,000 population is three times higher than the average of OECD. In particular, 60% of it occurs on the community road. Thus, this study intends to analyze the causes of such accidents through a pedestrian and vehicle traffic survey. The purpose is to establish practical safety enhancement measures for community roads. In recent years, lots of changes have occurred in the pedestrian environment. A traffic survey shows that 65% of pedestrians walk on the right and 17% of people use smart-phones while walking. An eye camera experiment shows that the operation load of drivers on the community roads is more than 4 times higher than those in urban roads. According to a speed survey, 62% of vehicles drive at 30km/h or above. The characteristics of accidents on community roads are as follows. First, the ratio of accidents on the edge of the road is 2.3 times as high as those on other roads. Second, when people walk on the right, the ratio of accidents is 2.5 times as high as that of walking on the left. Third, it becomes more dangerous when people cross the road from the right to the left. The majority of accidents is caused by unsafe driving (84.4%). When a vehicle makes a left turn, the likelihood of accidents is 2.3 times as high as those caused by a right turn. The ratio of accidents caused by vehicles going backwards is 14% among all accidents. In community roads, the focus of drivers should be at least 4 times higher than those on urban roads. Thus, walking in the opposite direction of vehicles and careless behaviors are highly likely lead to accidents.