• Title/Summary/Keyword: Pedestrian tracking

Search Result 76, Processing Time 0.023 seconds

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Pedestrian Traffic Counting Using HoG Feature-Based Person Detection and Multi-Level Match Tracking (HoG 특징 기반 사람 탐지와 멀티레벨 매칭 추적을 이용한 보행자 통행량 측정 알고리즘)

  • Kang, Sung-Wook;Jung, Jin-dong;Seo, Hong-il;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.385-392
    • /
    • 2016
  • Market analysis for a business plain is required for the success in the modern world. Most important part in this analysis is pedestrian traffic counting. A traditional way for this is counting it in person. However, it causes high labor costs and mistakes. This paper proposes an automatic algorithm to measure the pedestrian traffic count using images with webcam. The proposed algorithm is composed of two parts: pedestrian area detection and movement tracking. In pedestrian area detection, moving blobs are extracted and pedestrian areas are detected using HoG features and Adaboost algorithm. In movement tracking, multi-level matching and false positive removal are applied to track pedestrian areas and count the pedestrian traffic. Multi-level matching is composed of 3 steps: (1) the similarity calculation between HoG area, (2) the similarity calculation of the estimated position with Kalman filtering, and (3) the similarity calculation of moving blobs in the pedestrian area detection. False positive removal is to remove invalid pedestrian area. To analyze the performance of the proposed algorithm, a comparison is performed with the previous human area detection and tracking algorithm. The proposed algorithm achieves 83.6% accuracy in the pedestrian traffic counting, which is better than the previous algorithm over 11%.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

Robust Multi-person Tracking for Real-Time Intelligent Video Surveillance

  • Choi, Jin-Woo;Moon, Daesung;Yoo, Jang-Hee
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.551-561
    • /
    • 2015
  • We propose a novel multiple-object tracking algorithm for real-time intelligent video surveillance. We adopt particle filtering as our tracking framework. Background modeling and subtraction are used to generate a region of interest. A two-step pedestrian detection is employed to reduce the computation time of the algorithm, and an iterative particle repropagation method is proposed to enhance its tracking accuracy. A matching score for greedy data association is proposed to assign the detection results of the two-step pedestrian detector to trackers. Various experimental results demonstrate that the proposed algorithm tracks multiple objects accurately and precisely in real time.

A Study on Multiple Target Tracking Using Adaptive Neural Network and Mosaic Background Extraction (모자이크 배경이미지 추출과 적응적 신경망을 이용한 다중 보행자 추적 시스템에 관한 연구)

  • 서창진;양황규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1802-1808
    • /
    • 2003
  • In this paper, we propose a method about the extraction of the pedestrian tracking trajectory in the road and we used the method of mosaic background extraction and adaptive neural network for automatic pedestrian tracking system. We used mosaic background extraction to overcome ghost phenomenon. And we detected pedestrian using differential image analysis. We used adaptive neural network for multiple pedestrian tracking that non­rigid form moving. The ART2 network is capable of detecting the mass­centers of moving objects within one frame. The history of neurons positions in the sequential frames approximates the traces of the targets. The experiments done with the network in simulated environment show promising results.

A Study on the Pedestrian Path Choice in Clothing Outlets - Focused on the Three Sample Outlet Customer Circulation System - (대형 의류매장의 경로선택에 관한 분석적 연구 - 3개 매장 고객동선의 사례를 중심으로 -)

  • 박순주;정성욱;임채진
    • Korean Institute of Interior Design Journal
    • /
    • no.28
    • /
    • pp.140-148
    • /
    • 2001
  • The purpose of this thesis is to provide basic information of efficient flow line arrangement, which results from examining the factors of route choice with a focus on the store' space elements and pedestrian activity patterns in the outlets. The route tracking is applied to grasp pedestrian activity patterns, therefore, a concrete analysis into influential factors of the space structure arrangement and forms on route choice. The route tracking is a means to understand pedestrian activity patterns by establishing an unrecognizable space and examining every route in the investigating area for pedestrian activity pattern research. Three sample stores have different systems in the ground plan structures, the escalator location and the directions. The analysis focuses on the booth arrangement and shopping patterns. In conclusion, route choice of the customers and the structure of the space are quite closely related and affect the quality of shopping. This can suggest evidence for the need of the space structure to meet the pedestrian activity patterns.

  • PDF

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.

Temporal Search Algorithm for Multiple-Pedestrian Tracking

  • Yu, Hye-Yeon;Kim, Young-Nam;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2310-2325
    • /
    • 2016
  • In this paper, we provide a trajectory-generation algorithm that can identify pedestrians in real time. Typically, the contours for the extraction of pedestrians from the foreground of images are not clear due to factors including brightness and shade; furthermore, pedestrians move in different directions and interact with each other. These issues mean that the identification of pedestrians and the generation of trajectories are somewhat difficult. We propose a new method for trajectory generation regarding multiple pedestrians. The first stage of the method distinguishes between those pedestrian-blob situations that need to be merged and those that require splitting, followed by the use of trained decision trees to separate the pedestrians. The second stage generates the trajectories of each pedestrian by using the point-correspondence method; however, we introduce a new point-correspondence algorithm for which the A* search method has been modified. By using fuzzy membership functions, a heuristic evaluation of the correspondence between the blobs was also conducted. The proposed method was implemented and tested with the PETS 2009 dataset to show an effective multiple-pedestrian-tracking capability in a pedestrian-interaction environment.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

Multiple Pedestrians Detection and Tracking using Histogram and Color Information from a Moving Camera (이동 카메라 영상에서 히스토그램과 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • 임종석;곽현욱;김욱현
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a novel histogram and color information based algorithm for detecting and tracking multiple pedestrians from a moving camera. In the proposed method, RGB color histogram is used to detect adjacent pedestrians and RGB mean value is used to track detected pedestrians. Therefore, our algorithm detect contiguous or a few occluded pedestrians and track in case pedestrian's shape change. The experimental results on our test sequences demonstrate the high efficiency of our method.