• Title/Summary/Keyword: Pedestrian simulation

Search Result 148, Processing Time 0.024 seconds

Impact Analysis of a Pedestrian Lower Legform Model (보행자 다리 하체 모형의 차량 충돌해석)

  • Kim, Jin-Gon;Park, Yong-Kuk;Kim, Jung-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.52-56
    • /
    • 2012
  • Recently, the pedestrian protection regulations of Europe and Japan are becoming more stringent. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. In this study, we construct a finite element model of pedestrian lower legform impactor prescribed in EEVC (European Experimental Vehicle Committee) W/G 10, and performed a impact analysis between the impactor and the front end module of vehicle. The simulations are carried out by using LS-DYNA3D, which is a well-known nonlinear dynamic simulation software. The analysis results according to various impact location show the impact characteristics of the lower legform.

Development of a New Pedestrian Avoidance Algorithm considering a Social Distance for Social Robots (소셜로봇을 위한 사회적 거리를 고려한 새로운 보행자 회피 알고리즘 개발)

  • Yoo, Jooyoung;Kim, Daewon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.734-741
    • /
    • 2020
  • This article proposes a new pedestrian avoidance algorithm for social robots that coexist and communicate with humans and do not induce stress caused by invasion of psychological safety distance(Social Distance). To redefine the pedestrian model, pedestrians are clustered according to the pedestrian's gait characteristics(straightness, speed) and a social distance is defined for each pedestrian cluster. After modeling pedestrians(obstacles) with the social distances, integrated navigation algorithm is completed by applying the newly defined pedestrian model to commercial obstacle avoidance and path planning algorithms. To show the effectiveness of the proposed algorithm, two commercial obstacle avoidance & path planning algorithms(the Dynamic Window Approach (DWA) algorithm and the Timed Elastic Bands (TEB) algorithm) are used. Four cases were experimented in applying and non-applying the new pedestrian model, respectively. Simulation results show that the proposed algorithm can significantly reduce the stress index of pedestrians without loss of traveling time.

A Study on Pedestrian Priority Actuated Signal Control Considering Waiting Time for Walking and Pedestrian Stress (보행대기시간과 보행자스트레스를 고려한 보행자우선 감응신호 운영방안 연구)

  • Choi, Bongsoo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.18-29
    • /
    • 2022
  • Since the operation of an reft-turn actuated signal driven mainly by vehicles may increase the waiting time for walking, this signal causes inconvenience or stress to pedestrians. Therefore, in this study, the change in waiting time for walking before and after the application of an reft-turn actuated signal and the stress on the pedestrians were investigated through a questionnaire. The investigation showed that the waiting time for walking increased by 37% during non-peak time. Also the waiting time for walking of 62.1% of pedestrians became longer and 78% of them were stressed because of it. Meanwhile, simulation(VISSIM) showed that the vehicle travel speed slightly decreased to 1.07km/h(a 2.5% decrease), and the average waiting time for walking decreased by 15.51sec(a 28% decrease) with a pedestrian priority actuated signal. Therefore, it is expected that the pedestrian priority actuated signal can reduce the waiting time for walking and relieve pedestrian stress.

Analysis of Pedestrian Evacuation Behaviors by the Evacuation Information Scenarios Using Social Force Model: Focusing on Sejong City (Social Force Model을 활용한 보행자 대피행태 및 정보제공 시나리오분석: 세종시를 중심으로)

  • Choi, Seung hyun;Jung, Ho yong;Do, Myung sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.31-41
    • /
    • 2018
  • This study aims to analyze region-based pedestrian evacuation behaviors and information offering effect using Social Force Model, which is micro simulation. All pedestrians were assumed to move to shelters through pedestrian roads according to guidance information at emergency situations, and the pedestrians were classified into adults and the handicapped. According to the results of the road network analysis and simulation analysis, the shelters to which pedestrians can move within the shortest time from each zone were selected as optimum shelters. From this study, the analysis showed that the information provision effects are informative even though total evacuation time increases due to the increase of pedestrian conflict. This study can be used as baseline data for urban area's pedestrian disaster prevention plans.

An Analysis on Evacuation Scenario at Metro-stations using Pedestrian Movement-based Simulation Model (보행류 기반 도시철도역사 평가 시뮬레이터를 활용한 대피 시나리오 분석)

  • You, So-young;Jung, Rea-hyuck;Chung, Jin-hyuck
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.36-49
    • /
    • 2016
  • A subway system is one of the major transportation modes at a metropolitan area. When it meets the other lines, the metro station, so-called transferring station, is usually threatened by severe pedestrian congestion and safety issue of transit users including the transportation vulnerable. Although transportation planners forecast travel demand at the beginning, it is not easy to predict pedestrian flows precisely for a long term if land use plans have dramatically changed. Due to expensive costs, structural extension of metro stations is limited. Therefore, it requires efficient and technical improvements as meeting the demand of pedestrian and physical characteristics. In this study, the core mechanism of pedestrian movement-based simulation model was introduced and evacuation scenarios were analyzed with the developed model. As a result, the multiple optimal routes for unexpected events at the solid space of the multiple stories are easily searched through the simulator and in the case of Sadang Station, travel time can be reduced by 60% when the evacuation information and intuitive design are provided.

The LOS Analysis of Railway Station Facilities Based on Design Hourly Factor and Simulation (설계시간계수 및 Simulation 기반 철도역사 이용시설 LOS 분석)

  • Oh, Tae-ho;Lee, Seon-ha;Cheon, Choon-keun;Kim, Eun-ji;Yu, Byung-young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.105-117
    • /
    • 2016
  • Recently the passenger of railway satisfaction levels are lowered. the reason why the railway station was built without considering the increased passenger due to diversification(transfer, shopping, and etc.) of the domestic railway station infrastructure. Especially, in case of KTX Gwangju-Songjeong Station, the number of its passenger has been increased about more than three times since its opening in 2015, so that there are much inconvenience generated in the station congested with passengers. his study aims to excute using Pedestrian simulation and Design Hourly Factor concepts of Highway Engineering, in order to designing the optimum area through the passenger demand forecast for each station. For this analysis was divided into the second stage. Frist, the railway passenger was calculated by using the methodology of Design Hourly Factor that is used during road design in the aspect of traffic engineering. Second, we tried to analyze the level of service in each railway station facility through the pedestrian simulation. Analytical results show that utilizing pedestrian simulation provides verification for calculation of LOS of each railway station facility. Therefore, In the future when designing railway station of facilities will be possible to suggest the facilities area based on LOS.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

Design Criteria of Traffic Island Considering Pedestrian LOS (보행자 서비스 수준을 고려한 교통섬 설계기준 연구)

  • Park, Byung Ho;Beak, Tae Hun;Jung, Yong Il
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.5
    • /
    • pp.23-31
    • /
    • 2012
  • The objective of this study is to develop the design criteria of traffic island considering pedestrian level of service (LOS). In pursuing the above, this study gives particular emphasis to suggesting the minimum design space of traffic island in order to maintain pedestrian LOS C and D, and the critical pedestrian traffic volume that reflects the intersection geometry (2 lanes per direction) through the simulation analysis. The main results are as follows. First, the spaces of 160 traffic islands, which meet the pedestrian LOS C and D and reflects the pedestrian traffic volume by signal cycle, are drawn by using a commercial simulator VISSIM. The relevant spaces of traffic island in terms of both the pedestrian LOS and the pedestrian traffic volume are evaluated to range from $3.0m^2$ to $41m^2$. Second, the critical pedestrian traffic volume for the operation of traffic island is evaluated to be 1,000-1,300 person/hour at LOS C and 1,600-1,800 person/hour at LOS D, respectively, when a cycle of 120-150 seconds were applied to a intersection with two lanes per direction.

Study on Methodology for Effect Evaluation of Information Offering to Rail passengers - Focusing on the Gate Metering Case Study considering congested conditions at a platform - (철도 이용객 정보제공 효과평가 방법론 연구 - 승강장의 혼잡상황을 고려한 Gate Metering 사례 연구 중심으로 -)

  • Lee, Seon-Ha;Cheon, Choon-Keun;Jung, Byung-Doo;Yu, Byung-Young;Kim, Eun-Ji
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.50-62
    • /
    • 2015
  • Recently, Subway Line No. 9, described as a 'hell-like' subway for its recorded load factor of max. 240% due to the opening of the 2nd phase extension section, has been causing problems of recurrent congestion in a subway station building. A recurrent congestion in the station building becomes a factor to offend rail users and to reduce the efficiency of railway management. This study aims to establish the methodology for effect evaluation of information provided to rail users, and conducts a gate metering case study considering the congested conditions at a platform among the methodologies for effect evaluation. The metering effect evaluation by load factor was conducted through selecting the micro simulation and pedestrian simulation tool grafting a gate metering. As a result, it was confirmed that, if gate metering is performed, the service level and pedestrian density of a platform by load factor would improve. In other words, if metering is conducted at a platform, it is possible to control the load factor in the waiting space of a platform. Therefore, it was judged through this study that it is possible to set up the index for effect evaluation of information provided to manage congestion of rail users, and establish the methodology for effect evaluation of information provided to rail users through a program.

An Enhanced Floor Field based Pedestrian Simulation Model (개선된 Floor Field 기반 보행 시뮬레이션 모델)

  • Jun, Chul-Min
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 2010
  • Many pedestrian simulation models for micro-scale spaces as building indoor areas have been proposed for the last decade and two models - social force model and floor field model - are getting attention. Among these, CA-based floor field model is viewed more favourable for computer simulations than computationally complex social force model. However, Kirchner's floor field model has limitations in capturing the differences in dynamic values of different agents and this study proposes an enhanced algorithm. This study improved the floor field model in order for an agent to be able to exclude the influences of its own dynamic values by changing the data structure, and, also modified the initial dynamic value problem in order to fit more realistic environment. In the simulations, real 3D building data stored in a spatial DBMS were used considering future integration with indoor localization sensors and real time applications.