• Title/Summary/Keyword: Pedestrian path network

Search Result 23, Processing Time 0.02 seconds

Smart Control System Using Fuzzy and Neural Network Prediction System

  • Kim, Tae Yeun;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.105-115
    • /
    • 2019
  • In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.

An Study of Pedestrian Efficiency in Apartment Complexes - Focused on Pedestrian Path in Apartment Complexes - (아파트 단지의 보행효율성에 관한 연구 - 단지 내 보행로를 중심으로 -)

  • Yang, Dongwoo;Yu, Sang-Gyun
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.85-94
    • /
    • 2018
  • This study aims to investigate how easy pedestrians get around within/through the "Apartment Complexes (AC), " a common style of high-rise multi-family housing in Korea. Over the past six decades, the AC has been the most conventional way to provide standardized housing efficiently to address the problems of the shortage of housing and the substandard housing, due to the explosion of urban population with the rapid industrialization. The AC is a huge chunk of homeogenous multi-family housing, mostly condos with decent infrastructure, including parks, pedestrian passages, schools, ect. Both in the new town development and urban renewal programs have utilized the advantages of the AC. Since the design principals of AC tend to adopt the "protective design" to prevent cars and pedestrians coming outside from passing it, it has been criticised for dissecting the continuity of socioeconomic context in neighborhoods. The neo-traditional planning urbanists, including Jane Jacobs, emphasize that smaller blocks and grid road newtworks are the key in improving social, cultural, and economic vitality of the neighborhoods, because these design concepts allow more pedestrians and different types of people to be mixed in a neighborhood. In this study, we first adopted objective measures for pedestrian accessibility and pedestrian efficiency. These measures were used to calculate the lengths of shortest paths from residential buildings to the edges of AC. We tested the difference in shortest paths between the current pedestrian networks of AC and hypothetical grid networks on the AC, and the relative difference is considered as the pedestrian efficiency, using the network analysis function of Geographic Information Systems (GIS) and Python programming. We found from the randomly selected 30 ACs that the existing non-grid road networks in ACs are worse than the hypothesized grid networks, in terms of pedestrian efficiency. In average, pedestrians in AC with the conventional road networks have to walk than 25%, 26%, and 27% longer than the networks of $125{\times}45m$, $100{\times}45m$, and $75{\times}45m$, respectively. With the t-test analysis, we found the pedestrian efficiency of AC with the conventional network is lower than grid-networks. Many new urbanists stress, easiness of walking is one of the most import elements for community building and social bonds. With the findings from the objective measures of pedestrian accessibility and efficiency, the AC would have limitations to attract people outside into the AC itself, which would increase dis-connectivity with adjacent areas.

Link Label-Based Optimal Path Algorithm Considering Station Transfer Penalty - Focusing on A Smart Card Based Railway Network - (역사환승페널티를 고려한 링크표지기반 최적경로탐색 - 교통카드기반 철도네트워크를 중심으로 -)

  • Lee, Mee Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.941-947
    • /
    • 2018
  • Station transfers for smart card based railway networks refer to transfer pedestrian movements that occur at the origin and destination nodes rather than at a middle station. To calculate the optimum path for the railway network, a penalty for transfer pedestrian movement must be included in addition to the cost of within-car transit time. However, the existing link label-based path searching method is constructed so that the station transfer penalty between two links is detected. As such, station transfer penalties that appear at the origin and destination stations are not adequately reflected, limiting the effectiveness of the model. A ghost node may be introduced to expand the network, to make up for the station transfer penalty, but has a pitfall in that the link label-based path algorithm will not hold up effectively. This research proposes an optimal path search algorithm to reflect station transfer penalties without resorting to enlargement of the existing network. To achieve this, a method for applying a directline transfer penalty by comparing Ticket Gate ID and the line of the link is proposed.

A Variational Inequality-based Walkability Assessment Model for Measuring Improvement Effect of Transit Oriented Development (TOD) (대중교통중심개발(TOD) 개선효과 진단을 위한 변동부등식기반 보행네트워크 평가모형)

  • Sohn, Jhieon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.259-268
    • /
    • 2016
  • The core strategy of transit oriented development (TOD) is to promote high density mixed land use around railway stations. Case studies in advanced countries show that provision of policies for comprehensive maintenance of pedestrian facilities around railway station spheres is being pursued with efficacy. In spite of the importance placed on integrated pedestrian maintenance, domestic construction of integrated pedestrian infrastructure around railway station spheres lacks direction. Thus, there is a clear need for an evaluation standard that can provide the foundation for judgments on TOD improvement. This research proposes a network model that consolidates the interior of the station as well as its surrounding areas to determine the ease of pedestrian flow for effective TOD evaluation. The model considers the railway station and surrounding areas as an assembled network of pedestrian flow. The path chosen by the pedestrian is defined as the optimal degree of inconvenience, and expands on Wardrop's User Equilibrium (1952). To assess the various circumstances that arise on pedestrian facilities including congestion of the pedestrian pathway, constrained elevator capacity, and wait at the crosswalk, a variational inequality based pedestrian equilibrium distribution model is introduced.

Comparison of Deep-Learning Algorithms for the Detection of Railroad Pedestrians

  • Fang, Ziyu;Kim, Pyeoungkee
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2020
  • Railway transportation is the main land-based transportation in most countries. Accordingly, railway-transportation safety has always been a key issue for many researchers. Railway pedestrian accidents are the main reasons of railway-transportation casualties. In this study, we conduct experiments to determine which of the latest convolutional neural network models and algorithms are appropriate to build pedestrian railroad accident prevention systems. When a drone cruises over a pre-specified path and altitude, the real-time status around the rail is recorded, following which the image information is transmitted back to the server in time. Subsequently, the images are analyzed to determine whether pedestrians are present around the railroads, and a speed-deceleration order is immediately sent to the train driver, resulting in a reduction of the instances of pedestrian railroad accidents. This is the first part of an envisioned drone-based intelligent security system. This system can effectively address the problem of insufficient manual police force.

Study on the Method to Create a Pedestrian Path Using Space Decomposition based on Quadtree (쿼드트리 기반의 공간분할 기법을 활용한 경로 생성 방안에 관한 연구)

  • Ga, Chill-O;Woo, Ho-Seok;Yu, Ki-Yun
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • Recently, the target of navigation system is moving from the cars to pedestrians. Many researches are in progress regarding pedestrian navigation, However, in most cases, the path-finding is based on the existing node/link network model. which is widely used for the car navigation, and thus showing its limitation. The reasons arc that a) unlike with a car, the paths that pedestrians take arc not limited to the roads, b) pedestrians an~ not restricted in rotation or direction, and c) they can freely move within the walkable space. No alternatives have been offered yet, especially for openspaces such as a park or square. Therefore, in this research, we suggested appropriate methods to create paths that can be used in pedestrian navigation service, by using motion-planning technology, which is used in the field of robotics for planning the motion of an object, and conducted tests for their applicability.

A Pedestrian Network Assignment Model Considering Space Syntax (공간구문론(Space Syntax)을 고려한 통합보행네트워크 통행배정모형)

  • Lee, Mee Young;Kim, Jong Hyung;Kim, Eun Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.37-49
    • /
    • 2015
  • In Space Syntax, the greater the degree of integration between separate links, the greater the links' accessibility from the target network. As such, planning pedestrian walks so that links with high degrees of integration are connected, or else inducing high integration value land use are both valid options. The travel distribution model reflects how walking demand, or more specifically, the pedestrian, partakes in route choosing behavior that minimizes select criteria, notably level of discomfort, as measured using travel distance and time. The model thus demonstrates travel patterns associated with demand pertaining to minimization of discomfort experienced by the pedestrian. This research introduces a method that integrates Space Syntax and the pedestrian travel distribution model. The integrated model will determine whether regions with high degrees of integration are actually being used as pivots for pedestrian demand movement, as well as to explain whether the degree of integration is sustained at an appropriate level while considering actual movement demand. As a means to develop the integrated model, a method that combines display of the visibility of the space syntax network and road-divided links is proposed. The pedestrian travel distribution model also includes an alternative path finding mechanism between origin and destination, which allows for uniform allocation of demand.

Directions for Improving the Pedestrian Environment in Main Street of Towns - Targeting Main Street in Four Local Government Towns in Jeollanam-do - (읍소재지 중심가로의 보행환경 개선 방향 - 전라남도 4개 지방정부 읍소재지의 중심가로를 대상으로 -)

  • Park, Sung-Jin;Kang, In-Ho
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • This study analyzed the path that affects the user's walking satisfaction on main street in four local government towns in Jeollanam-do. and as an empirical study to find the direction of improvement toward the main street from the perspective of walking, the results are as follows. First, it was found that the network had a direct (+) effect on walking satisfaction as a main street. In addition, it was analyzed that land use had no direct (+) effect on walking satisfaction on the main street, but had a direct (+) effect on the network. Second, it was analyzed from the fact that the walking environment does not have a direct (+) effect on walking satisfaction, but has a direct (+) effect on the network. and it was analyzed that the street-building relationship had a direct (+) effect on the street landscape, and the street landscape had a direct (+) effect on the walking environment. The study was completed by suggesting implications according to the above research results.

Development of Simulation Technology Based on 3D Indoor Map for Analyzing Pedestrian Convenience (보행 편의성 분석을 위한 3차원 실내지도 기반의 시뮬레이션 기술 개발)

  • KIM, Byung-Ju;KANG, Byoung-Ju;YOU, So-Young;KWON, Jay-Hyoun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.67-79
    • /
    • 2017
  • Increasing transportation dependence on the metro system has lead to the convenience of passengers becoming as important as the transportation capacity. In this study, a pedestrian simulator has been developed that can quantitatively assess the pedestrian environment in terms of attributes such as speed and distance. The simulator consists of modules designed for 3D indoor map authoring and algorithmic pedestrian modeling. Module functions for 3D indoor map authoring include 3D spatial modeling, network generation, and evaluation of obtained results. The pedestrian modeling algorithm executes functions such as conducting a path search, allocation of users, and evaluation of level of service (LOS). The primary objective behind developing the said functions is to apply and analyze various scenarios repeatedly, such as before and after the improvement of the pedestrian environment, and to integrate the spatial information database with the dynamic information database. Furthermore, to demonstrate the practical applicability of the proposed simulator in the future, a test-bed was constructed for a currently operational metro station and the quantitative index of the proposed improvement effect was calculated by analyzing the walking speed of pedestrians before and after the improvement of the passage. The possibility of database extension for further analysis has also been discussed in this study.

Integration of Space Syntax Theory and Logit Model for Walkability Evaluation in Urban Pedestrian Networks (도시 보행네트워크의 보행성 평가를 위한 공간구문론과 Logit 모형의 통합방안)

  • Kim, Jong Hyung;Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.62-70
    • /
    • 2016
  • Ensuring walkability in a city where pedestrians and vehicles coexist is an issue of critical importance. The relative relationship between vehicle transit and walkability improvements complicates the evaluation of walkability, which thus necessitates the formation of a quantitative standard by which a methodological measurement of walkability can be achieved inside the pedestrian network. Therefore, a model is determined whereby quantitative indices such as, but not limited to, experiences of accessibility, mobility, and convenience within the network are estimated. This research proposes the integration of space syntax theory and the logit path choice model in the evaluation of walkability. Space syntax theory assesses adequacy of the constructed pedestrian network through calculation of the link integration value, while the logit model estimates its safety, mobility, and accessibility using probability. The advantage of the integrated model hence lies in its ability to sufficiently reflect such evaluation measures as the integration value, mobility convenience, accessibility potential, and safety experienced by the demand in a quantitative manner through probability computation. In this research, the Dial Algorithm is used to arrive at a solution to the logit model. This process requires that the physical distance of the pedestrian network and the perceptive distance of space syntax theory be made equivalent. In this, the research makes use of network expansion to reflect wait times. The evaluation index calculated through the integrated model is reviewed and using the results of this sample network, the applicability of the model is assessed.