• Title/Summary/Keyword: Pedestrian information

Search Result 422, Processing Time 0.034 seconds

A Pedestrian Collision Warning System using a Fuzzy Logic (퍼지로직을 이용한 보행자 충돌 경고 시스템)

  • Kim, Yang Ho;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.440-448
    • /
    • 2015
  • A pedestrian collision warning system which makes a judgement of pedestrian's intention to help avoiding hitting accidents is proposed. This system uses the image sequences obtained from a car black box as well as vehicle's speed obtained from a GPS. It detects pedestrians, if any, based on the Histogram of Gradient method and extracts several information such as the pedestrian's relative positions, the direction of motion vectors, and distance between vehicle and pedestrian . A fuzzy logic based on these extracted information is applied to analyze the pedestrian's safety levels. When the safety level is determined to be danger, an alarm is triggered to the driver. The performance of the proposed algorithm is tested under various driving scenarios, which shows it works successfully in real-time.

A New Route Guidance Method Considering Pedestrian Level of Service using Multi-Criteria Decision Making Technique

  • Joo, Yong-Jin;Kim, Soo-Ho
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The route finding analysis is an essential geo-related decision support tool in a LBS(Location based Services) and previous researches related to route guidance have been mainly focused on route guidances for vehicles. However, due to the recent spread of personal computing devices such as PDA, PMP and smart phone, route guidance for pedestrians have been increasingly in demand. The pedestrian route guidance is different from vehicle route guidance because pedestrians are affected more surrounding environment than vehicles. Therefore, pedestrian path finding needs considerations of factors affecting walking. This paper aimed to extract factors affecting walking and charting the factors for application factors affecting walking to pedestrian path finding. In this paper, we found various factors about environment of road for pedestrian and extract the factors affecting walking. Factors affecting walking consist of 4 categories traffic, sidewalk, network, safety facility. We calculated weights about each factor using analytic hierarchy process (AHP). Based on weights we calculated scores about each factor's attribute. The weight is maximum score of factor. These scores of factor are used to optimal pedestrian path finding as path finding cost with distance, accessibility.

The Analysis of User's Degree on Landscape Satisfaction Factors for Pedestrian Road -Case Study of Bun-Dang New Town- (보행자 전용도로의 이용자 경관만족 요인분석 -분당 신도시를 중심으로-)

  • Kim, Dae-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • The purpose of this study was to investigate factors and variables which have significant effects on landscape satisfaction of urban pedestrian road in Bun-dang new town and to suggest basic information for urban pedestrian road design. These works consist of two phase. First, we tested the Hye-Cheon college students' degree of landscape satisfaction for 37 spots of urban pedestrian road and then selected 10 sports slide by the Sturges' formula. Second, we analysed factors and variables on landscape satisfaction of urban pedestrian road using the semantic differential scale method and then processed using descriptive analysis, factor analysis and multiple linear regression analysis. The major findings of this study can be summarized as follows; 1) The difference of landscape adjectives between the highest score of landscape satisfaction slide and the lowest score landscape satisfaction slide were diversity of vegetation, plenty of the shade of a tree, naturalness and cleanness. 2) Diversity of vegetation, width of road, freedom of danger and diversity of environment can be significant variables of major effects on landscape satisfaction of urban pedestrian road by using the multiple linear regression analysis. 3) Factors covering the landscape satisfaction of urban pedestrian road have been found to be Environment of urban pedestrian road and Constitution of urban pedestrian road. By using the Varimaxs' rotation factor analysis for the number of factors' cumulative percentage has been obtained as 64%. 4) Environment of urban pedestrian road and Constitution of urban pedestrian road can be significant factors of major effects on landscape satisfaction of urban pedestrian road by using the multiple linear regression analysis. In conclusion, the landscape satisfaction factors and variables of urban pedestrian road need to be considered in plan or design the urban pedestrian road.

  • PDF

Improved Social Force Model based on Navigation Points for Crowd Emergent Evacuation

  • Li, Jun;Zhang, Haoxiang;Ni, Zhongrui
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1309-1323
    • /
    • 2020
  • Crowd evacuation simulation is an important research issue for designing reasonable building layouts and planning more effective evacuation routes. The social force model (SFM) is an important pedestrian movement model, and is widely used in crowd evacuation simulations. The model can effectively simulate crowd evacuation behaviors in a simple scene, but for a multi-obstacle scene, the model could result in some undesirable problems, such as pedestrian evacuation trajectory oscillation, pedestrian stagnation and poor evacuation routing. This paper analyzes the causes of these problems and proposes an improved SFM for complex multi-obstacle scenes. The new model adds navigation points and walking shortest route principles to the SFM. Based on the proposed model, a crowd evacuation simulation system is developed, and the crowd evacuation simulation was carried out in various scenes, including some with simple obstacles, as well as those with multi-obstacles. Experiments show that the pedestrians in the proposed model can effectively bypass obstacles and plan reasonable evacuation routes.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Sensor fusion based ambulatory system for indoor localization

  • Lee, Min-Yong;Lee, Soo-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2010
  • Indoor localization for pedestrian is the key technology for caring the elderly, the visually impaired and the handicapped in health care districts. It also becomes essential for the emergency responders where the GPS signal is not available. This paper presents newly developed pedestrian localization system using the gyro sensors, the magnetic compass and pressure sensors. Instead of using the accelerometer, the pedestrian gait is estimated from the gyro sensor measurements and the travel distance is estimated based on the gait kinematics. Fusing the gyro information and the magnetic compass information for heading angle estimation is presented with the error covariance analysis. A pressure sensor is used to identify the floor the pedestrian is walking on. A complete ambulatory system is implemented which estimates the pedestrian's 3D position and the heading.

A Mobile Agent-based Computing Environment for Pedestrian Tracking Simulation

  • Xie, Rong;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.354-356
    • /
    • 2003
  • The study of pedestrian behavior covers wide topics, including way finding, choice and decision make, as well as spatial cognition and environmental perception. To address the problem, simulation is now put forward as suitable technique and method for analyzing human spatial behavior. In the paper we present a development architecture for simulating tracking pedestrian in a distributed environment. We introduce and explore the potential of using mobile agent-enabled distributed implementation model as a tool for development and implementation of the simulation. Three kinds of mobile agents are designed for implementation of managing and querying data of pedestrian. Finally, simulation result of JR 10,000 passengers’ movement is developed and implemented as a case study.

  • PDF

Pedestrian Detection Algorithm using a Gabor Filter Bank (Gabor Filter Bank를 이용한 보행자 검출 알고리즘)

  • Lee, Sewon;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.

Analysis of Deep Learning-Based Pedestrian Environment Assessment Factors Using Urban Street View Images (도시 스트리트뷰 영상을 이용한 딥러닝 기반 보행환경 평가 요소 분석)

  • Ji-Yeon Hwang;Cheol-Ung Choi;Kwang-Woo Nam;Chang-Woo Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.45-52
    • /
    • 2023
  • Recently, as the importance of walking in daily life has been emphasized, projects to guarantee walking rights and create a pedestrian environment are being promoted throughout the region. In previous studies, a pedestrian environment assessment was conducted using Jeonju-si road images, and an image comparison pair data set was constructed. However, data sets expressed in numbers have difficulty in generalizing the judgment criteria of pedestrian environment assessors or visually identifying the pedestrian environment preferred by pedestrians. Therefore, this study proposes a method to interpret the results of the pedestrian environment assessment through data visualization by building a web application. According to the semantic segmentation result of analyzing the walking environment components that affect pedestrian environment assessors, it was confirmed that pedestrians did not prefer environments with a lot of "earth" and "grass," and preferred environments with "signboards" and "sidewalks." The proposed study is expected to identify and analyze the results randomly selected by participants in the future pedestrian environment evaluation, and believed that more improved accuracy can be obtained by pre-processing the data purification process.