
A Mobile Agent-based Computing Environment for
Pedestrian Tracking Simulation

Rong XIE, Prof. Ryosuke SHIBASAKI

Center for Spatial Information Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505

{xierong, shiba}@iis.u-tokyo.ac.jp

Abstract: The study of pedestrian behavior covers wide topics,
including way finding, choice and decision make, as well as
spatial cognition and environmental perception. To address the
problem, simulation is now put forward as suitable technique
and method for analyzing human spatial behavior. In the paper
we present a development architecture for simulating tracking
pedestrian in a distributed environment. We introduce and
explore the potential of using mobile agent-enabled distributed
implementation model as a tool for development and
implementation of the simulation. Three kinds of mobile agents
are designed for implementation of managing and querying
data of pedestrian. Finally, simulation result of JR 10,000
passengers’ movement is developed and implemented as a case
study.
Key words: Human Spatial Behavior, Pedestrian Tracking
Simulation, Distributed Computing, Mobile-Agent.

1. Introduction

The study of pedestrian behavior covers wide range of
topics, including way finding, human migration, choice
and decision make, as well as spatial cognition and
environmental perception. To address the problem,
simulation is now put forward as suitable technique and
method for analysis of such human spatial behavior.

In this paper we present a development architecture
for simulating tracking pedestrian in a distributed
environment. Simulations have been built up for
exploring complex pedestrian behavior in urban centers.

Our approach is based on the integration of three
modules: organization of distribution data of pedestrian
flow, distributed query processing, and simulation of
human crows in distributed environment. We introduce
and explore the potential of using mobile agent-enabled
distributed implementation model and simulation as a
tool for integrating these modules and examining the
complex interactions between pedestrian and
environment.

Some suggestions for development and
implementation of the simulation are discussed in the
paper. The distributed computing environment among
these modules is established through a paradigm of
mobile agent architecture. Three kinds of mobile agents,
such as migration agent, information agent and
collaboration agent are designed for implementation of
managing and querying data of pedestrian. Finally,
simulation result of JR 10,000 passengers’ movement is
developed and implemented as a case study in the paper.

2. Mobile Agent-enabled Distributed
Implementation

1) Why Mobile Agents?

Recently, it is widely recognized that mobile agent
technology is a promising design paradigm for network
computing, which is also a natural successor to the
object-oriented paradigm. Mobile agent is the basis of an
emerging technology that promises to make it very much
easier to design, implement, and maintain distributed
systems.

We are interested in it by the benefits of its providing
for the creation of distributed systems. [1] gives seven
good reasons for mobile agent technology. Some
advantages of mobile agent related to our research are:
(1) to reduce the network load; (2) to provide load
balancing; (3) to be robust and fault-tolerant.

The FIPA (Foundation for Intelligent Physical Agents)
specification [2] is developed through direct involvement
of the FIPA membership. It provides specification of
basic agent technologies that can be integrated by agent
systems developers to make complex systems with a
high degree of interoperability. Based on this standard,
we propose a mobile agent-enabled distributed
implementation model.

2) Agent Management System

• Manager Agent

An organizational structure framework of agent
management system is proposed in Fig. 1. It describes
execution mode of an operation process. In this structure,
an agency is defined as a manager agent with one (or
null) set of tasks.

Addressing

Query Processing

Status
Sets

DB

Naming

slave agents

manager
agent

Agency

Internal Platform Message Transport

Task
Module

Agent Communication Channel

Directory Facilitator

Fig. 1. Agent Management System Architecture

Agentcy = manager agent + task;
task = { taski };
taski :: =

<task_name><input><output><condition><implement
ation body>.

Manager agent provides an execution environment for

other slave agents. It manages some mobile agents,
deciding to establish what kinds of agents, their address
to the remote node and tasks mobile objects should do.
Fig. 2 gives UML representation of manager agent.

Slave AgentsManagerAgent

+createAgent(codeBase:URL):AgentProxy
+dispose()
+dispatch(address: URL)
+retract(agent_id:String, codeBase:URL)
+agentNaming(): String
+agentAddressing(): URL

Agent

Fig. 2. UML Representation of the Manager Agent

• Slave Agents

Slave agent is a computer program that can accept
tasks from its manager agent and dispatch itself to
different nodes to search for suitable computational
resources in order to finish the assigned tasks.

Slave Agent

+identifier:AgletID
+position:URL

+getAgletID()
+getCodeBase():URL
+getAddress():String

AgentManager

AutonomousAgent

+autonomousAgent()

InformationAgent

+informationAgent()

CollaborationAgent

+initializeTask()
+doTask()

ConcreteAgent

+initializeTask()
+doTask()

Agent

Fig. 3. UML Representation of the Slave Agents

In light of the various characteristics of agents, slave

agents are classified into the following three categories
of agents as described in Fig. 3, Among them,
autonomous agent can migrate between hosting system

to enhance the efficiency of computation and reduce the
network traffic. While information agent plays the role
of managing, manipulating or collecting information
from many distributed sources. Collaboration agent’s
major characteristic is that it cooperates with other
agents.

3. Distributed Query Processing

To implement distributed query processing, we can
have two kinds of agent: (1) To design an information
agent, and dispatch it to each server or node database to
search for information and implement tasks. After agent
finishes its tasks, it will come back with the result
information. (2) In many applications, we usually design
collaboration agents. Firstly, to divide a task into several
sub-tasks and to assign them to multiple agents. After
these agents finish their tasks, they will come back with
result information. The result information will be
combined to form the final result to show to user.

A typical query format submitted might be “report all
objects that reside inside the region P at the time instants
between time t1q and t2q, given the trajectories
information of all mobile objects”. The process of
distributed query is shown as in Fig. 4. When user
submits request, the following steps is conducted to
reach the purpose: (1) receiving query request; (2) node
determine and agent dispatching; (3) local data
processing; (4) result returning and trajectory simulation.

Fig. 4. Distributed Query Processing

1) Agent Design

After receiving quest request, implementing the
lookup operation to decide location of nodes, and then
implementing the collaboration operation to create
several slave agents to dispatch to the remote nodes.

2) The Query Operation

JDBC is the database connectivity package included in
the core Java API.*. JDBC gives you a database-
independent interface for opening a connection to a

relational database, issuing SQL calls to the database,
and receiving a set of data as the results.

Handling query operation at local node after slave
agent arrives at the local node. The following example
shows a Java code segment that opens a database
connection, executes a query and iterates through the
results.

01: String url ← ”jdbc:odbc:event”;
02: Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
03: Connection con ← DriverManager.getConnection(url);
04: Statement sm ← con.createStatemement();
05: String tempstr ← ”Select column_expression [,

 column_expression…] From tablename
[WHERE logical expression];
06: ResultSet rs ← sm.executeQuery(tempstr);
07: while(rs.next())
08: // ……
09: repeat
10: QueryResult result ← new QueryResult();
11: collaborate(new AgentResult(getAgentID()), result);

4. Pedestrian Tracking Simulation and
Analysis

1) Experimental Data

We apply our approaches to a case study of 10, 000
passengers’ movement in JR railway stations. In this
case study, investigation data of JR 10000’98
passengers’ movement from JR Higashi Nihon Kikaku
[3] are used for experimental data. The whole project is
organized by JR Higashi Nihon Kikaku and conducted
during September to November in 1998 to know
personal movement characteristics and pattern everyday.
The study area is located inside the range of
approximately 70 square km in Tokyo, including Tokyo
Prefecture, Shinnagawa Ken, Saitama Ken, Chiba Ken,
and Ibaraki Ken. With the help of questionnaire surveys,
information about personal travel behavior by railway is
recorded. The whole sample comprised 10,000 with ages
ranging from 12 to 69 years. We organize these data in
database and store them distributedly according to
railway line.

2) Movement Pattern Query

• Personal Travel Simulation in One Day
SELECT line_in, station_in, time_in, line_out, station_out, time_out
FROM nodei.route
WHERE object_id = object_id AND day = day

• Passengers’ Movement in JR Shinjuku Station
in One Day

SELECT line_in, station_in, time_in, line_out, station_out, time_out
FROM nodei.route
WHERE day = day AND station_id = Shinjuku_id AND (time >=
time_in AND time <= time_out

• Comparison of Passengers’ Movement among
JR Stations at Rush Hour

SELECT line_in, station_in, time_in, line_out, station_out, time_out
FROM nodei.route
WHERE day = day AND (station_id = Shinjuku_id OR station_id =
Ikebukuro_id OR station_id = Tokyo_id) AND (time >= time_in AND
time <= time_out)

• Passengers’ Movement Simulation on JR
Yamanote Line

SELECT line_in, station_in, time_in, line_out, station_out, time_out
FROM nodei.route
WHERE day = day AND (station_id = station_id_onYamanoteLine)
OR (line_id = YamanoteLine_id) AND (time >= time_in AND time <=
time_out)

3) Simulation Result

On the basis of these movement pattern queries,
visualization can be further implemented for the analysis
spatial behavioral pattern, such as distribution of
passengers, trajectory simulation of passengers’
movement. Here we give a simulation result as follows.
In Fig. 5, simulation result shows two situations, one is
that passengers use Yamanote line, the other is that
passengers transfer, enter or leave stations on Yamanote
Line, such as Ueno Station, Akibahara Station Tokyo
Station etc. at given time period, example here represents
snapshot of crowd situation and passenger density on
this line at rush hour at about 8:30 am in the morning.

Yamanote
Line

Fig. 5. Snapshot of Passengers’ Movement on JR Yamanote
Line

5. Concluding Remarks

We propose a development architecture for
development and simulation of tracking pedestrian by
mobile agent-enabled distributed implementation model.
The simulation result shows the proposed model can be
used as tool for exploring complex pedestrian behavior
in distributed environment.

References

[1] Danny B. Lange, 1998. Mitsuru Oshima. Programming and
Deploying Java Mobile Agents with Aglets, Addison-Wesley.
[2] FIPA, 1998. FIPA 98 Part 1 Version 1.0: Agent
Management Specification, Foundation for Intelligent Physical
Agents. Available at: http://www.fipa.org/specs/fipa00002/.
[3] URL: JR Higashi Nihon Kikaku Corporation. Available at:
http://www.jeki.co.jp/marketing/.
[4] R. XIE, 2003. A Study on Data Modeling for Mobile
Object Management and Distributed Simulation. Doctoral
dissertation, The University of Tokyo.

	Return to previous screen
	A Mobile Agent-based Computing Environment for Pedestrian Tracking Simulation

