• Title/Summary/Keyword: Peak to Compton

Search Result 16, Processing Time 0.019 seconds

Measurement and Monte Carlo Simulation evaluation of a Compton Continuum Suppression with low level soil Sample (저준위 토양시료를 이용한 콤프턴 연속체 억제의 측정 및 몬테카롤로 시뮬레이션 평가)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.123-131
    • /
    • 2018
  • This study compared PENELOPE with measured values from low energy peak to high energy peak to reduce peak to compton ratio and continuum background spectrum using $^{60}Co$, $^{137}Cs$ and mixed volume source. In addition, the change in backscattering and compton edge efficiency was compared with that of PENELOPE through changes in the vicinity of low energy. The results from the mixed volume source are applied to the soil samples to determine how much the minimum detection limits of the soil samples are reduced in the suppression and unsuppressed mode. The compton suppression of the low energy region of $^{60}CO$ (1,173 keV) was considerable, and the Compton edge RF for the $^{137}Cs$ (661 keV) peak was 2.8. In particular, the $^{60}Co$ source emits coincidence gamma rays of 1,173.2 keV and 1,332.5 keV, so compton inhibition was reduced by approximately 21%. RF of compton edges of 1,173 keV and 1,332 keV emitted from a $^{60}Co$ source was 3.2 and 3.4, and the peak to compton edge ratio was improved to 8: 1. And Compared with Penelope, the uncertainty was well within 2%. In compton unsuppressed mode, MDA values of 661 keV, 1,173 keV and 1,332 keV were 0.535, 0.173 and 0.136 Bq/kg, respectively, but decreased in compton suppressed mode to 0.121, 0.00826 and 0.00728 Bq/kg. Thus, Compton suppressed could reduce the background radioactivity and the radioactivity contained in the detector itself.

Measurement of MDA of Soil Samples Using Unsuppression System and Compton Suppression of Environmental Radioactivity in Processing Technology (환경 방사능 처리기술에서의 Compton suppression 및 Unsuppression system을 이용한 토양시료의 MDA 측정)

  • Kang, Suman;Im, Inchul;Lee, Jaeseung;Jang, Eunsung;Lee, Mihyeon;Kwon, Kyungtae;Kim, Changtae
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.293-299
    • /
    • 2014
  • Compton suppression device is a device by using the Compton scattering reaction and suppress the Compton continuum portion of the spectrum, so can be made more clear analysis of gamma ray peak in the Compton continuum region. Measurements above background occurs or, radioactivity counts of radioactivity concentration value of $^{40}K$ nuclides $^{137}Cs$ and natural radioactivity artificial radioactivity detected from the surface soil sample, unwanted non-target analysis and interference peak who dotted line you know the calibration of the measurement energy is allowed to apply the (Compton suppression) non-suppressed spectrum inhibition spectrum and (Compton Unsuppression) the background to the measured value of the activity concentration value of the standard-ray source is detected relative to the peak of By measuring according to the different distances cause $^{137}Cs$, and comparative analysis of the Monte Carlo simulation, in order to obtain a detection capability for efficient, looking at the Compton inhibitor, as the CSF value increases with increase in the distance, more It was found that the background due to Compton continuum of the measured spectrum suppression mode Compton unrestrained mode can know that the Compton suppression many were made, using a $^{137}Cs$ is reduced.

Study of 4π Compton Suppression Spectrometer by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 4π 컴프턴 억제 분광기 연구)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.123-129
    • /
    • 2017
  • Compton suppression apparatus using the Compton scattering response, by inhibiting part of the spectrum Compton continuum Compton continuum in the area of the peak analysis of the gamma rays that enables a clearer device. In order to find out the geometry structure of high-purity germanium detector(HPGe) -NaI(TI) and to optimize the effect of movement, Monte Carlo simulation was used to grasp the behavioral characteristics of Compton suppression and compare several layout structures. And applied to the cylinder beaker used for the environmental measurement by using the efficiency according to the distance. For the low-energy source such as 81 keV, the Compton continuum is scarcely developed and the suppression effect is also insignificant because the scattering cross-section of the Compton effect is relatively low. In the spectrum for the remaining energy, it can be seen that the Compton continuum part is suppressed in a certain energy range. Compton suppression effect was not significantly different from positional shift. average reduction factor(ARF) value was about 1.08 for 81 keV and about 1.23 for 1332.4keV energy at the highest value. It can be seen that suppression over the Compton continuum region of the energy spectrum is a more appropriate arrangement. Therefore, it can be applied to various environmental sample measurement through optimized structure.

Broad Beam Gamma-Ray Spectrometric Studies with Environmental Materials

  • El-Kateb, Abdul-Hamid Hussein
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • Background: Gamma-ray spectrometry helps in radiation shielding problems and different applications of radioisotopes. Experimental arrangements including broad beam geometries are widely used. The aim is to investigate and evaluate the ${\gamma}-ray$ spectra via attenuation by environmental materials. Materials and Methods: The photo peak to nominated parts in the ${\gamma}-ray$ spectra and the attenuation coefficients ${\mu}_b/{\rho}$ from broad beam geometries are measured for the materials water, soil, sand and cement at the energies 0.662, 1.25, and 1.332 MeV with a $3{^{\prime}^{\prime}}{\times}3{^{\prime}^{\prime}}$ NaI(Tl) detector. Results and Discussion: The ${\gamma}-ray$ spectra vary according to changes in the effective atomic number $Z_{eff}$ of the attenuator, the photon energy and the solid angle. The peak to total ratios are the most sensitive parts to variations in the experimental conditions and overturn in the region 0.663 MeV to 1.332 MeV. This is indicated as inversion trend. The results are discussed in view of $Z_{eff}$ and the experimental conditions. The intensity build-up is larger at the lower energy and larger scattering angles in agreement with Klein-Nishina formula and other results. The build-up factor B is$${\sim_=}$$1 at high ${\gamma}-energies$ and small scattering angles. Conclusion: The sensitivity to material characteristics decrease gradually from peak: to total, to Compton valley, to Compton plateau ratios. Rigorous collimation is necessary at small energies. Cement, of the largest $Z_{eff}$, is characterized by the maximum broad beam mass attenuation coefficients ${\mu}_b/{\rho}$. The obtained results provide information to decide for the suitable experimental set-up based on aim of the work.

Strategies to improve the range verification of stochastic origin ensembles for low-count prompt gamma imaging

  • Hsuan-Ming Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3700-3708
    • /
    • 2023
  • The stochastic origin ensembles method with resolution recovery (SOE-RR) has been proposed to reconstruct proton-induced prompt gammas (PGs), and the reconstructed PG image was used for range verification. However, due to low detection efficiency, the number of valid events is low. Such a low-count condition can degrade the accuracy of the SOE-RR method for proton range verification. In this study, we proposed two strategies to improve the reconstruction of the SOE-RR algorithm for low-count PG imaging. We also studied the number of iterations and repetitions required to achieve reliable range verification. We simulated a proton beam (108 protons) irradiated on a water phantom and used a two-layer Compton camera to detect 4.44-MeV PGs. Our simulated results show that combining the SOE-RR algorithm with restricted volume (SOE-RR-RV) can reduce the error of the estimation of the Bragg peak position from 5.0 mm to 2.5 mm. We also found that the SOE-RR-RV algorithm initialized using a back-projection image could improve the convergence rate while maintaining accurate range verification. Finally, we observed that the improved SOE-RR algorithm set for 60,000 iterations and 25 repetitions could provide reliable PG images. Based on the proposed reconstruction strategies, the SOE-RR algorithm has the potential to achieve a positioning error of 2.5 mm for low-count PG imaging.

Evaluation of the Shielding Effect of Lead Apron according to the Energy Spectrum Change of 99mTc (99mTc의 에너지 스펙트럼 변화에 따른 납 앞치마의 차폐 효과 평가)

  • Changyong Yoon;Youngsik Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.889-896
    • /
    • 2023
  • Changes in the energy spectrum were analyzed using 99mTc as a point source and a scattering phantom, and the shielding effect of the lead apron according to the changed gamma ray energy was evaluated. In the gamma ray energy spectrum of the scattering phantom, the photo peak area decreased and the compton scattering area increased compared to the point source. The coefficients for each energy range according to the change in the shape of the gamma ray source showed a reduction rate of up to 66.1 % at a distance of 20 cm compared to the coefficient of the point source, and in the compton scattering area, the coefficient of the scattering phantom was 122.2 % at a distance of up to 40 cm compared to the coefficient of the point source. In the difference in shielding rate according to the distance between the source and the scattering phantom using a gamma camera, the photo peak area showed similar results, but in the Compton scattering area, the shielding rate of the scattering phantom at a distance of 20 cm increased by 29.2 % compared to the shielding rate of the point source. As the distance increased, the difference in shielding rate decreased. In measuring the shielding rate of the lead apron using a radiation dosimeter, the difference in the shielding rate of the scattering phantom was up to 15.3 %, and as the distance increased, the difference in the shielding rate between the two sources decreased. The shielding rate of the lead apron of the scattering phantom is higher than that of the point source, and the effectiveness of the lead apron increases as the distance to the source increases. As a result, wearing a lead apron when directly confronting a patient who has injected radioactive pharmaceuticals is expected to be helpful in reducing radiation exposure.

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio (감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구)

  • Kim, Jun-Ha;Cheong, Jea-Hak;Hong, Sang-Bum;Seo, Bum-Kyung;Lee, Byung Chae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

Study on Determination of Boron using the PGAA Facility at HANARO Research Reactor (하나로의 즉발감마선 방사화분석 장치를 이용한 붕소의 정량에 대한 연구)

  • Chung, Young-Sam;Cho, Hyun-Jae;Moon, Jong-Hwa;Kim, Sun-Ha;Kim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.391-398
    • /
    • 2003
  • Basic research for the determination of boron content in biological sample has been carried out using the PGAA facility of the 24MW research reactor(HANARO). For investigation of characteristics for the measurement condition, neutron flux and its homogeneity were measured at irradiating geometry. The size of thermal neutron beam collimated from beam guide is $2{\times}2cm^2$ at the sample position. The neutron flux measured was the range of $1.0{\sim}6.5{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$, and flux distribution from center within the radius of 4.5 mm and 9.0 mm was $5.77{\pm}0.71{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$ and $4.68{\pm}1.64{\times}10^7n{\cdot}cm^{-2}{\cdot}s^{-1}$, respectively. Accordingly, sample size is adjusted within 10 mm for a homogeneous irradiation of high quality. Measurement system is designed to reduce the background source by Compton scattering and to improve the analytical sensitivity. To investigate the energy calibration and Compton suppression effect of gamma-ray counting system, the background conditions on both of Compton and single-mode were measured using NaCl standard. On the other hand, degree of spectral interference for sodium 472 keV peak as a matrix effect in the sample is established for an accurate boron analysis, and then boron content in three certified reference materials (NIST SRM 1570a, 1547, 1573a) was measured by using two modes and the results were compared with each other.

An Analysis of ${\gamma}-ray$ Energy Spectra Using the NaI(T1) Scintillation Detector in the Air and Water (NaI(T1) 섬광검출기를 이용한 공기 및 수중에서의 감마선 에너지스펙트럼 분석)

  • Kim, Eun-Sug;Park, Jae-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 1996
  • The energy spectra in the air and water of several ${\gamma}-ray$ sources such as Cr-51, Cs-137, Mn-54, Zn-65 have been investigated using the NaI(T1) scintillation detector. General response functions, which can curve fit the measured spectra, have been constructed. We have found that the constructed response functions can successfully represent the measured spectra in the water as well as in the air, It is possible, by comparing the relevant parameters of the response functions, to quantitatively characterize the changing features of the measured spectra as obtained with varying the water depth. Of the response function parameters, those which affect the shape of the full-energy Peak have most notably changed. Besides, those parameters which affect the shapes of the flat continuum, the Compton continuum and edge have also shown slight changes with varying the water depth.

  • PDF