• Title/Summary/Keyword: Peak performance

Search Result 2,250, Processing Time 0.031 seconds

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.

Effects of Freezing of Gait on Spatiotemporal Variables, Ground Reaction Forces, and Joint Moments during Sit-to-walk Task in Parkinson's Disease

  • Park, Hwayoung;Youm, Changhong;Son, Minji;Lee, Meounggon;Kim, Jinhee
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • Objective: This study aimed to analyze the effects of freezing of gait on spatiotemporal variables, ground reaction forces (GRFs), and joint moments during the sit-to-walk task at the preferred and maximum speeds in patients with Parkinson's disease (PD). Method: The subjects were classified by a neurologist into 12 freezers, 12 non-freezers, and 12 controls. Sit-to-walk parameters were measured during three repetitions of the task in a random order at the preferred and maximum possible speeds. Results: In the sit-to-walk task at the preferred speed, the freezers and non-freezers exhibited a higher peak anterior-posterior GRF (p<0.001) in the sit-to-stand phase and lower step velocity (p<0.001), step length (p<0.001), and peak anterior-posterior GRF (p<0.001) in the first-step phase than the controls. The freezers had higher peak anterior-posterior GRF (p<0.001) and peak moment of the hip joint (p=0.008) in the sit-to-stand phase than the non-freezers. In the sit-to-walk phase at the maximum speed, the freezers and non-freezers had lower peak moment of the hip joint (p=0.008) in the sit-to-stand phase than the controls. The freezers and non-freezers displayed lower step velocity (p<0.001) and peak anterior-posterior GRF (p<0.001) in the first-step phase than the controls. The freezers showed higher peak moments of the hip joint in the sit-to-stand phase than the non-freezers (p=0.008). Conclusion: The PD patients had reduced control ability in sit-to-stand motions for efficient performance of the sit-to-walk task and reduced performance in the sit-to-walk task. Furthermore, the freezers displayed reduced control ability in the sit-to-stand task. Finally, the PD patients exhibited a lower ability to control dynamic stability with changes in speed than the controls.

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration (염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사)

  • Yunsuk Kang;Gwihwan Lim;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.381-390
    • /
    • 2023
  • In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules (스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구)

  • Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Comparison of Simulated PEC Probe Performance for Detecting Wall Thickness Reduction

  • Shin, Young-Kil;Choi, Dong-Myung;Jung, Hee-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.563-569
    • /
    • 2009
  • In this paper, four different types of pulsed eddy current(PEC) probe are designed and their performance of detecting wall thickness reduction is compared. By using the backward difference method in time and the finite element method in space, PEC signals from various thickness and materials are numerically calculated and three features of the signal are selected. Since PEC signals and features are obtained by various types and sizes of probe, the comparison is made through the normalized features which reflect the sensitivity of the feature to thickness reduction. The normalized features indicate that the shielded reflection probe provides the best sensitivity to wall thickness reduction for all three signal features. Results show that the best sensitivity to thickness reduction can be achieved by the peak value, but also suggest that the time to peak can be a good candidate because of its linear relationship with the thickness variation.

A Study on the Peak Separation of Acetone and Acrolein Based on High-Performance Liquid Chromatography (HPLC) Method

  • Kim, Shin-Do;Kim, Chang-Hwan;Park, Jin-Su;Lee, Jeong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2011-2016
    • /
    • 2009
  • To resolve the differentiation problem of acetone and acrolein in the analysis of carbonyls by high-performance liquid chromatography (HPLC), we investigated the optimum analytical conditions for their separation. Carbonyl compounds were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated cartridges. We examined the influence of three experimental variables: temperature (25, 30, 40, 50 and 60 ${^{\circ}C}$), flow rate (1.0 and 1.2 mL/min), and relative mobile phase composition (among acetonitrile, water and tetrahydrofuran). The experimental results revealed the optimum analytical condition of a flow rate of 1.2 mL/min, temperature of 32 ${^{\circ}C}$ and mobile phase composition of acetonitrile: water: tetrahydrofuran = 34 : 52.8 : 13.2. The analysis of indoor air composition indicated that acrolein and acetone comprised 11% and 42% of all aldehydes, respectively.

Ground ing Impedance Characteristics of Ground Rods in frequency Domain (주파수 영역에서 봉상전극의 접지임피던스 특성)

  • Lee, Hyung-Soo;Shim, Keon-Bo;Kim, Kyung-Chul;Choi, Jong-Kee;Park, Sang-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.248-253
    • /
    • 2005
  • Although DC ground resistance is a good index of grounding performance for grounding electrodes, it does not reflect the grounding performance during transient state. Besides, impulse ground impedance, which is defined by a ratio of the peak value of transient ground potential rise to the peak value of impulse current, cannot be an absolute index due to its dependence on impulse current shape. In this paper, ground impedance of various rod-type ground electrodes has been measured in frequency domain ranging from 1 Hz to hundreds of kHz. Equivalent circuit models of the ground rod have been identified from the measured values of ground impedance in frequency domain.

  • PDF

Modeling of Impedance Characteristics of Grounding Electrode for Distribution Line Pole (배전전주의 봉상 접지전극 형태별 임피던스 특성의 모델링)

  • Shim, Keon-Bo;Kim, Kyung-Chul;Lee, Hyung-Soo;Park, Jae-Duck;Choi, Jong-Kee;Park, Sang-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.694-696
    • /
    • 2005
  • Although DC ground resistance is a good index of grounding performance for grounding electrodes, it does not reflect the grounding performance during transient state. Besides, impulse ground impedance, which is defined by a ratio of the peak value of transient ground potential rise to the peak value of impulse current, cannot be an absolute index due to its dependence on impulse current shape. In this paper, ground impedance characteristics of ground electrodes has been measured in frequency domain ranging from 1 Hz to hundreds of kHz. Equivalent circuit models and transfer function models of the ground rod have been identified from the measured values of ground impedance in frequency domain.

  • PDF

New PAPR Reduction Method for Spatial Modulation (공간변조 기법을 위한 새로운 PAPR 감쇄 방법)

  • Shang, Yulong;Kim, Hojun;Kim, Hongjoong;Jung, Taejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.12-18
    • /
    • 2014
  • In this paper, a new peak-to-average power ratio (PAPR) reduction method for spatial modulation(SM) is presented. By using the matrix with all non-zero elements to precode the signals before transmitting, the transmit power is scattered over all transmit antennas for achieving the goal of PAPR reduction. If this matrix is also an unitary matrix, the distribution of transmit power over transmit antennas will be uniform and it also could retain the characteristic of avoiding inter channel interference (ICI) due to the orthogonality of unitary matrix. In case of a non-ideal amplifier, the proposed method can produce a considerable improvement that increases with a number of transmit antennas in performance. Furthermore, the new scheme achieves an identical performance with conventional one in the case of ideal amplifier.

A Study on Processing and Performance of a 600dpi Master F-theta Lens (600dpi 마스터 에프세타 렌즈 가공 및 성능에 관한 연구)

  • Park, Yong-Woo;Moon, Seong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • This study examines the processing and performance of an f-theta lens, one of the main components used in laser printer and laser scanning systems. To design an f-theta lens, the optical path of the components of the laser scanning unit f-theta lens, cylinder lens, and collimator lens must be identified. The goal after machining the master f-theta lens is to understand the optical properties, root mean square, and peak to valley.