• Title/Summary/Keyword: Peak electricity demand controller

Search Result 4, Processing Time 0.015 seconds

A Study on the Load Forecasting Methods of Peak Electricity Demand Controller (최대수요전력 관리 장치의 부하 예측에 관한 연구)

  • Kong, In-Yeup
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, load forecasting of the unit of seconds using the Exponential Smoothing Methods, ARIMA model, Kalman Filter is proposed. Also simulation of load forecasting of the unit of the seconds methods and existing forecasting methods is performed and analyzed the accuracy. As a result of simulation, the accuracy of load forecasting methods in seconds is higher.

An Optimal Power Scheduling Method Applied in Home Energy Management System Based on Demand Response

  • Zhao, Zhuang;Lee, Won Cheol;Shin, Yoan;Song, Kyung-Bin
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.677-686
    • /
    • 2013
  • In this paper, we first introduce a general architecture of an energy management system in a home area network based on a smart grid. Then, we propose an efficient scheduling method for home power usage. The home gateway (HG) receives the demand response (DR) information indicating the real-time electricity price, which is transferred to an energy management controller (EMC). Referring to the DR, the EMC achieves an optimal power scheduling scheme, which is delivered to each electric appliance by the HG. Accordingly, all appliances in the home operate automatically in the most cost-effective way possible. In our research, to avoid the high peak-to-average ratio (PAR) of power, we combine the real-time pricing model with the inclining block rate model. By adopting this combined pricing model, our proposed power scheduling method effectively reduces both the electricity cost and the PAR, ultimately strengthening the stability of the entire electricity system.

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.