• Title/Summary/Keyword: Peak detection algorithm

Search Result 191, Processing Time 0.025 seconds

Development of Tool Fracture Index for Detection of Tool Fracture in Milling Process (밀링시 공구 파손 검출을 위한 공구 파손 지수의 도출)

  • 김기대;오영탁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.881-888
    • /
    • 1997
  • A new algorithm for detection of tool fracture in milling process was developed. The variation of the peak-to-valley value of cutting load was used in this algorithm. Various kinds of vectors representing the condition of tool, such as tool condition vector, reference tool condition vector, tool condition variation vector were defined. Using these vectors, tool fracture index which represents the magnitude of tool fracture and is independent of tool run-outs is developed. Small and large tool fracture and chipping under various cutting condition could be detected using proposed tool fracture index, which was proved with cutting force model and experiments.

  • PDF

A Study on the Detection of Evoked Potential using Blind Identification (블라인드 식별을 이용한 유발 전위 추출에 관한 연구)

  • Woo, Yong-Ho;Kim, Taek-Soo;Kim, Hyun-Sool;Choi, Yoon-Ho;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1310-1312
    • /
    • 1996
  • In this study, the algorithm for detection of evoked potentials is proposed. The observed evoked potentials are first preprocessed by blind identification so as to eliminate the ongoing EEG Bile noise. Then, statistic characteristics of the peak components i.e latency and amplitude are detected from prefiltered responses by latency-corrected averaging method. The performance of blind identification is compared with those of adaptive fillers as to deterministic and stochastic EPs, is assessed in terms of NMSE, distortion index, correlation coefficient with original EPs. The estimated deterministic and stochastic EPs restored with peak components are compared and assessed. The results show the superiority of this proposed algorithm using blind identification in detecting deterministic and stochastic EPs.

  • PDF

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

A Colony Counting Algorithm based on Distance Transformation (거리 변환에 기반한 콜로니 계수 알고리즘)

  • Mun, Hyeok;Lee, Bok Ju;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.24-29
    • /
    • 2016
  • One of the main applications of digital image processing is the estimation of the number of certain types of objects (cells, seeds, peoples etc.) in an image. Difficulties of these counting problems depends on various factors including shape and size variation, degree of object clustering, contrast between object and background, object texture and its variation, and so on. In this paper, a new automatic colony counting algorithm is proposed. We focused on the two applications: counting the bacteria colonies on the agar plate and estimating the number of seeds from images captured by smartphone camera. To overcome the shape and size variations of the colonies, we adopted the distance transformation and peak detection approach. To estimate the reference size of the colony robustly, we also used k-means clustering algorithm. Experimental results show that our method works well in real world applications.

Development of Portable Cable Fault Detection System with Automatic Fault Distinction and Distance Measurement (자동 고장 판별 및 거리 측정 기능을 갖는 휴대용 케이블 고장 검출 장치 개발)

  • Kim, Jae-Jin;Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1774-1779
    • /
    • 2016
  • This paper proposes a portable cable fault detection system with automatic fault distinction and distance measurement using time-frequency correlation and reference signal elimination method and automatic fault classification algorithm in order to have more accurate fault determination and location detection than conventional time domain refelectometry (TDR) system despite increased signal attenuation due to the long distance to cable fault location. The performance of the developed system method was validated via an experiment in the test field constructed for the standardized performance test of power cable fault location equipments. The performance evaluation showed that accuracy of the developed system is less than 1.34%. Also, an error of automatic fault type and location by detection of phase and peak value through elimination of the reference signal and normalization of correlation coefficient and automatic fault classification algorithm not occurred.

Study and Experimentation on Detection of Nicks inside of Porcelain with Acoustic Emission

  • Jin, Wei;Li, Fen
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1572-1579
    • /
    • 2006
  • An usual acoustic emission(AE) event has two widely characterized parameters in time domain, peak amplitude and event duration. But noise in AE measuring may disturb the signals with its parameters and aggrandize the signal incertitude. Experiment activity of detection of the nick inside of porcelain with AE was made and study on AE signal processing with statistic be presented in this paper in order to pick-up information expected from the signal with noise. Effort is concentrated on developing a novel arithmetic to improve extraction of the characteristic from stochastic signal and to enhance the voracity of detection. The main purpose discussed in this paper is to treat with signals on amplitudes with statistic mutuality and power density spectrum in frequency domain, and farther more to select samples for neural networks training by means of least-squares algorithm between real measuring signal and deterministic signals under laboratory condition. By seeking optimization with the algorithm, the parameters representing characteristic of the porcelain object are selected, while the stochastic interfere be weakened, then study for detection on neural networks is developed based on processing above.

  • PDF

Improvement of ECG P wave Detection Performance Using CIR(Contextusl Information Rule-base) Algorithm (Contextual information 을 이용한 P파 검출에 관한 연구)

  • 이지연;김익근
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.235-240
    • /
    • 1996
  • The automated ECG diagnostic systems that are odd in hospitals have low performance of P-wave detection when faced with some diseases such as conduction block. So, the purpose of this study was the improvement of detection performance in conduction block which is low in P-wave detection. The first procedure was removal of baseline drift by subtracting the median filtered signal of 0.4 second length from the original signal. Then the algorithm detected R peak and T end point and cancelled the QRS-T complex to get'p prototypes'. Next step was magnification of P prototypes with dispersion and detection of'p candidates'in the magnified signal, and then extraction of contextual information concerned with P-waves. For the last procedure, the CIR was applied to P candidates to confirm P-waves. The rule base consisted of three rules that discriminate and confirm P-waves. This algorithm was evaluated using 500 patient's raw data P-wave detection perFormance was in- creased 6.8% compared with the QRS-T complex cancellation method without application of the rule base.

  • PDF

A broadband detection algorithm using cross-correlation of two split beams for cylindrical array sonar (원통형 배열 소나를 위한 두 개의 분리 빔의 상호상관을 이용한 광대역탐지 기법)

  • Kwak, ChulHyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.300-304
    • /
    • 2017
  • In a cylindrical sonar, a conventional broadband energy detector has limitations in the separation of adjacent targets. In this paper, a broadband detection algorithm using cross-correlation is applied to the cylindrical sonar to improve the bearing resolution. The proposed algorithm uses split beamforming before broadband detection processing using cross-correlation to generate half beams. The time delay obtained from the peak of correlation between half beams is used to estimate the bearing of target. Simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.

Detection of Fast Scene Changes Using a Statistical Technique (영상의 통계적 특성을 이용한 급격한 장면전화 검출 알고리즘)

  • 곽대호;박성준;이건호;최유태;송문호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.151-154
    • /
    • 2000
  • We propose a statically motivated scene change detection algorithm. As the difference between the neighboring frames will generate peaks at scene boundaries, the problem of detecting fast scene changes is equivalent to detecting peaks in a given sequence. In this paper, the peak detection is performed via several statistics, namely the sample means and variances. For eliminating flash lights as well as detecting fast scene changes within a small number of frames, we have opted to use a two-stage process for computing the necessary statistics. The results indicate superiority of necessary statistics. The results indicate superiority of the proposed algorithm over the previously reported algorithm.

  • PDF

A Novel Partial Shading Detection Algorithm Utilizing Power Level Monitoring

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.136-137
    • /
    • 2017
  • Maximum power point tracking (MPPT) under partial shading condition (PSC) is a challenging process in the PV array system. The shaded PV panel makes different peak patterns on the P-V curve and misguides the MPPT algorithm. Various kinds of global MPP (GMPP) detecting algorithms are used to overcome this issue. Generally, too frequent execution of GMPP tracking algorithm reduces the achievable power of PV panel due to time spent on the scanning process. Thus, partial shading detection algorithm is essential for efficient utilization of solar energy source. While conventional method only detects fast shading patterns, the proposed algorithm always shows superb performance regardless of the speed of partial shading patterns.

  • PDF