• Title/Summary/Keyword: Peak current density

Search Result 239, Processing Time 0.023 seconds

AC susceptibility of the $high-T_c$ superconductor $SmBa_2Cu_2O_y$ (고온초전도체 $SmBa_2Cu_2O_y$ 교류자화율)

  • Kim H;Lee B. Y;Lee J. H;Kim Y. C
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2004
  • The policrystalline$SmBa_2$$Cu_2$$O_{y}$ was synthesized by the solid state reaction method. The dependence of AC susceptibility on temperature and applied ac field was studied. The critical temperature $T_{c}$ is about 92 K. As the ac field is increased, the slope and the value of real part of susceptibility become smaller and the peak position of imaginary part $T_{P}$ was shifted to a lower temperature with peak broadening. Using Bean's model, we determined intergrain critical current density $J_{c}$ and obtained $44 A/{cm}^2$ at 75 K. From the relation of the $J_{c}$ (T)=($1-T/T_{c}$ )$^{\beta}$ we obtained $\beta$=0.8 and found that the Josephson junction type of the $SmBa_2$$Cu_2$$O_{y}$ is SIS junction. The peak of the imaginary part shifts to higher temperature with increasing frequency, f. from Arrhenius plot, we obtained the activation energy of about 0.96 eV.

  • PDF

Effects of $SiO_2$ Additive on the Microstructure and Electrical Characteristics of Zinc Oxide-Based MOV (산화아연계 MOV 소자의 미세구조 및 전기적 특성에 이산화 규소가 미치는 영향)

  • Jung, Soon-Chul;Lee, Woi-Chun;Nahm, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1361-1363
    • /
    • 1997
  • Zinc oxide-based MOV was fabricated with $SiO_2$ additive ranging from 0.5 to 4.0 mol%, and the microstructure and electrical characteristics were investigated. $Zn_2SiO_4$ phase formed by $SiO_2$ additive was distributed at ZnO grains, grain boundaries, and multiple grain junctions. As the content of $SiO_2$ additive increases, average grain size decreased from 40.6 to $26.9{\mu}m$ due to the Pinning effect by $Zn_2SiO_4$ at grain boundaries Breakdown voltage and nonlinear exponent increased, and leakage current decreased in the range of $11.2{\sim}6.14{\mu}A$ with an increasing $SiO_2$. Donor concentration and interface state density decreased, and barrier height increased in the range of $0.71{\sim}1.04eV$ with an increasing $SiO_2$. While, as the content of $SiO_2$ additive, apparent dielectric constant decreased, peak frequency of dissipation factor decreased in the range of $6.45{\times}10^5{\sim}3.00{\times}10^5Hz$, and dissipation peak was $0.31{\sim}0.22$ at Peak frequency.

  • PDF

DSSCs Efficiencies of PEG Additive In TiO2 Paste (TiO2 Paste에 PEG 첨가에 따른 DSSC의 효율 특성)

  • Kwon, Sung-Yeol;Yang, Wook;Zhang, Zi-Heng
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.746-752
    • /
    • 2014
  • Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.

Fluorescent White OLEDs with a High Color-rendering Index Using a Silicon-Cored Anthracene Derivative as a Blue Host

  • Kwak, Jeong-Hun;Lyu, Yi-Yeol;Lee, Hyun-Koo;Char, Kook-Heon;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.123-127
    • /
    • 2010
  • Fluorescent white organic light-emitting diodes showing high color-rendering indices (CRIs) of up to 81 was demonstrated, with a silicon-cored anthracene derivative (PATSPA) doped with DPAVBi utilized as the deep-blue host and dye materials, and the commercial dyes rubrene and DCM2 utilized as the orange- and red-light-emitting dyes. The devices, consisting of three emissive layers, showed bright-white-light emission, but the ratio of the blue peak to the orange and red peaks changed with the current density and the thickness of the blue emissive layer. A high CRI was achieved with the use of a deep-blue emitter doped in a novel host and by optimizing the blue-layer thickness. The device with a blue-layer thickness of 10 nm showed the Commission Internationale de l'Eclairage (CIE) color coordinate of (0.33, 0.35), a high CRI of 81, and a moderate external quantum efficiency of 2% at a current density of $2.5\;mA/cm^2$.

Effects of Al and Cr Alloying Elements on the Corrosion Behavior of Fe-Al-Cr Alloy System (Fe-Al-Cr계 합금의 부식거동에 미치는 Al 및 Cr 합금원소의 영향)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.241-247
    • /
    • 2005
  • Effects of Al and Cr alloying elements on the corrosion behavior of Fe-Al-Cr alloy system was investigated using potentiodynamic and cyclic potentiodynamic polarization tests(CPPT) in the $H_2SO_4$ and HCI solutions. The corrosion morphologies in Fe-Al-Cr alloy were analysed by utilizing scanning electron microscopy(SEM) and EDX. It was found that the corrosion potential of Fe-20Cr-20Al was highest whereas the critical anodic current density and passive current density were lower than that of the other alloys in 0.1 M $H_2SO_4$ solution. The second anodic peak at 1000 mV disappeared in the case of alloys containing high Al and low Cr contents. Pitting potential increased with increasing Cr content and repassivation potential decreased with decreasing Al content in 0.1 M HCI solution. Fe-Al-Cr alloy containing high Al and Cr contents showed remarkably improved pitting resistance against $Cl^-$ attack from pit morphologies.

A 11 kW 5.58 kW/L Electrolytic Capacitor-less EV Charger With Single- and Three-Phase Compatibility (11kW 5.58kW/L 무(無)전해커패시터 단상/3상 겸용 전기자동차 탑재형 충전기)

  • Kim, Hyung-Jin;Park, Jun-Yeong;Kim, Sun-Ju;Hakim, Ramadhan Muhammad;Phuc, Huu Kieu;Cho, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • A single and three phase-compatible single-stage EV charger without electrolytic capacitor is proposed in this study. DC battery-charging current is inherently guaranteed in the three-phase grid due to three output currents with a phase shift of 120° between each other. The proposed EV charger can provide a DC battery charging current for the single-phase grid through the integrated active power decoupling circuit without using additional switches. The proposed EV charger ensures ZVS turn-on of all switches with wide grid and battery voltage ranges. The 11 kW prototype of the proposed EV charger demonstrates a peak efficiency of 97.01% and a power density of 5.58 kW/L.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

LEFT INFERIOR FRONTAL GYRUS RELATED TO REPETITION PRIMING: LORETA IMAGING WITH 128-CHANNEL EEG AND INDIVIDUAL MRI

  • Kim, Young-Youn;Kim, Eun-Nam;Roh, Ah-Young;Goong, Yoon-Nam;Kim, Myung-Sun;Kwon, Jun-Soo
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.151-153
    • /
    • 2005
  • We investigated the brain substrate of repetition priming on the implicit memory taskusing low-resolution electromagnetic tomography (LORETA) with high-density 128 channel EEG and individual MRI as a realistic head model. Thirteen right-handed, healthy subjects performed a word/nonword discrimination task, in which the words and nonwords were presented visually,and some of the words appeared twice with a lag of one or five items. All of the subjects exhibited repetition priming with respect to the behavioral data, in which a faster reaction time was observed to the repeated word (old word) than to the first presentation of the word (new word). The old words elicited more positive-going potentials than the new words, beginning at 200 ms and lasting until 500 ms post-stimulus. We conducted source reconstruction using LORETA at a latency of 400 ms with the peak mean global field potentials and used statistical parametric mapping for the statistical analysis. We found that the source elicited by the old words exhibited a statistically significant current density reduction in the left inferior frontal gyrus. This is the first study to investigate the generators of repetition priming using voxel-by-voxel statistical mapping of the current density with individual MRI and high-density EEG.

  • PDF

Satellite data analysis of the China Coastal Waters in the Seas surrounding Jeju Island, Korea

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.344-347
    • /
    • 2006
  • China Coastal Water (CCW) usually appears in the seas surrounding Jeju Island annually (June?October) and is very pronounced in August. The power spectrum density (PSD), sea level anomalies (SLAs), and sea surface temperatures (SSTs) were found to peak annually and semiannually. The peaks at intervals of 80-, 60-, and 43-days are considered to be influenced by CCW and the Kuroshio Current. Generally, low-salinity water appears to the west of Jeju Island from June through October and gradually propagates to the east, where CCW meets the Tsushima Current. Empirical orthogonal function (EOF) analysis of SLAs and SSTs indicated that the variance in SLAs and SSTs was 55.70 and 98.09% in the first mode, respectively. The PSD for the first mode of EOF analysis of SLAs was stronger in the western than in the eastern waters because of the influence of CCW. The PSD for the EOF analysis of SSTs was similar in all areas (the Yangtze Estuary and the waters to the west and east of Jeju Island), with a period of approximately 260 days.

  • PDF

A study of the inductance measurement of an interior permanent magnet synchronous motor (매입형 영구자석 동기전동기의 인덕턴스 계측에 관한 연구)

  • Lee, Jeong-Hum;Kim, Young-Seok;Joung, Woo-Taik;Kim, Dai-Hyun;Choi, Yang-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.18-20
    • /
    • 2004
  • An interior permanent magnet synchronous motor (IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. IPMSM is necessary to use the accurate information of the inductace for the precise torque control owing to the reluctance torque. This paper presents two method to measure the each-axis inductance. The first method uses the peak current that is measured by applying the pulsewise voltage on the each position of IPMSM. The second uses the hysteresis loop of the flux and current measured by applying the positive and negative pulsewise voltage alternately on the each-axis.

  • PDF