• 제목/요약/키워드: Peak acceleration profile

검색결과 11건 처리시간 0.026초

1차원 지반응답해석을 통한 사면의 증폭특성 규명 (Estimation of amplification of slope via 1-D site response analysis)

  • 윤세웅;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

밸브 기구의 동특성을 고려한 캠 형상 설계에 관한 연구 (A Study on Optimum Cam Profile Extraction Considering Dynamic Characteristics of a Cam-Valve System)

  • 박경조;전혁수;박윤식
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.29-39
    • /
    • 1989
  • 본 논문에서는 우선 밸브 기구의 동적 특성을 보다 정교하게 묘사하기 위해서 4 자유도 집중 질량 모델을 세우고 시뮬레이션 결과와 실험 결과를 비교하여 실험을 더 잘 묘사할 수 있도록 모델을 개선하였다. 그리고 수립된 모델을 사용하여 밸브 변위, 속도, 가속도 특성 및 밸브 기구의 작동 오차를 정의하였다. 이 평균 자승 오차를 최소함으로써 중어진 캠 변위는 크게 변화시키지 않으면서 가속도 및 속도를 최소화한 캠을 설계하였다.

2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점 (Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake)

  • 이철호;박지훈;김태진;김성용;김동관
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구 (Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes)

  • 이철호;김성용;박지훈;김동관;김태진;박경훈
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

비구조요소의 내진설계를 위한 등가정적 층가속도 평가 (Evaluation of Equivalent-Static Floor Acceleration for Seismic Design of Non-Structural Elements)

  • 전수찬;이철호;배창준;김성용
    • 대한건축학회논문집:구조계
    • /
    • 제36권3호
    • /
    • pp.121-128
    • /
    • 2020
  • In this paper, the ASCE 7 equivalent static approach for seismic design of non-structural elements is critically evaluated based on the measured floor acceleration data, theory of structural dynamics, and linear/nonlinear dynamic analysis of three-dimensional building models. The analysis of this study on the up-to-date database of the instrumented buildings in California clearly reveals that the measured database does not well corroborate the magnitude and the profile of the floor acceleration as proposed by ASCE 7. The basic flaws in the equivalent static approach are illustrated using elementary structural dynamics. Based on the linear and nonlinear dynamic analyses of three-dimensional case study buildings, it is shown that the magnitude and distribution of the PFA (peak floor acceleration) can significantly be affected by the supporting structural characteristics such as fundamental period, higher modes, structural nonlinearity, and torsional irregularity. In general, the equivalent static approach yields more conservative acceleration demand as building period becomes longer, and the PFA distribution in long-period buildings tend to become constant along the building height due to the higher mode effect. Structural nonlinearity was generally shown to reduce floor acceleration because of its period-lengthening effect. Torsional floor amplification as high as 250% was observed in the building model of significant torsional irregularity, indicating the need for inclusion of the torsional amplification to the equivalent static approach when building torsion is severe. All these results lead to the conclusion that, if permitted, dynamic methods which can account for supporting structural characteristics, should be preferred for rational seismic design of non-structural elements.

신(新) 유사정적 사면안정해석 기법 개발 (Development of Novel Method of Seismic Slope Stability Analysis)

  • 윤세웅;박두희;이승호;황영철
    • 한국지반환경공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2009
  • 지진동에 대한 사면의 안정성은 일반적으로 지진계수를 이용하여 지진하중을 유사정적 하중으로 단순화하여 한계평형법으로 평가된다. Transient 지진동은 지진계수를 이용하여 정적하중으로 대체된다. 하지만, 유사정적 해석결과에 절대적인 영향을 미치는 지진계수는 합리적인 물리적 근거 없이 산정된다. 또한 내진설계기준에 의거하여 산정되는 최대가속도는 사면의 진동특성을 반영한다고 볼 수 없으며, 이를 정확하게 예측하기 위해서는 2차원 동적해석을 수행해야 한다. 본 연구에서는 수정된 1차원 동적해석과 유사정적해석을 연결한 Hybrid 유사정적 해석법을 제안하였다. 기존의 해석기법은 깊이에 따라서 변이하는 가속도를 고려할 수 없기에 신뢰성 있는 사면의 안정성 예측이 어려운 실정이다. 수정된 1차원 지반응답해석은 깊이에 따른 사면 무게변화를 모델링하기 위하여 층의 밀도를 조정하였으며 위치별 진동가속도를 예측하기 위해서 다수의 해석을 수행하였다. 2차원 유한요소해석과 비교한 결과, 수정된 1차원 해석은 2차원 해석과 일치성이 우수한 것을 확인할 수 있었다. 해석결과를 유사정적해석에 입력하여 깊이에 따라서 변이하는 가속도 주상도를 적용하였으며 기존의 해석방법으로 계산된 안전율과 비교하였다. 비교 결과, 계산된 안전율에는 큰 차이가 발생하는 것으로 나타났으며, 기존의 해석기법으로 안전율을 예측할 경우, 매우 비현실적인 값을 계산할 수 있다. 본 연구에서 개발된 기법은 해석의 신뢰성을 현격하게 향상시키는 것으로 나타났다.

  • PDF

후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가 (Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant)

  • 하정곤;김미래;김민규
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

평판 경계층 확산화염에서의 국부적 가속현상에 관한 실험적 연구 (An experimental study on the local velocity acceleration in a flat plate boundary layer diffusion flame)

  • 심성훈;하지수;신현동
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.847-864
    • /
    • 1988
  • 본 연구에서는 연료분출에 박리가 있는 경우와 없는 경우 각각에 대하여 화염 대 근처의 국부가속 현상이 박리에 의하여 어떻게 영향을 받는가를 실험적으로 규명하 고, 나아가서 종래에 행해져 왔던 관련 연구 결과를 재검토할려고 한다.

충격반응 스펙트럼 시험에서 웨이브레트를 이용한 충격파형 합성 (Shock Waveform Synthesis for Shock Response Spectrum Test by Using Wavelets)

  • 윤을재
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.88-98
    • /
    • 1998
  • 충격반응 스펙트럼 시험을 수행하기 위한 가진기의 파형이 웨이브레트들을 이온하여 시험규격에서 규정한 충격반응 스펙트럼을 만족하도록 합성된다. 웨이브레트의 매개변수는 중간주파수, 진폭, 반파의 개수, 지연시간 그리고 극성이다. 시험규격에서 규정한 충격반응 스펙트럼과 정합이 되도록 각 웨이브레트의 진폭은 반복하여 조절된다. 이렇게 합성된 파형은 가진기를 이용한 충격반응 스펙트럼 시험의 참조 가속도 파형으로 간주된다. 본 연구에서는 충격 지속시간을 길게 하여 첨두치가 작은 파형을 제안한다. 몇 가지 사례를 통하여 이 방법의 유용성이 확인되었다.

  • PDF