• Title/Summary/Keyword: Peak Runoff Reduction

Search Result 50, Processing Time 0.023 seconds

Analysis of Runoff Reduction Characteristics with LID Adaptation and LID Applicability at Bimodal Tram Route (LID 개념 적용으로 인한 유출 감소 특성 가능성 분석 및 바이모달 트램 전용노선에서의 적용성 검토)

  • Park, Jun-Ho;Park, Young-Kon;Yoon, Hee-Taek;Yoo, Yong-Gu;Kim, Jong-Gun;Park, Youn-Shik;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.147-150
    • /
    • 2008
  • Changes in land uses at urbanizing areas are causing flooding, increase in NPS pollutants. Thus, Low Impact Development (LID) concept is now being employed in urban planning for sustainable development. Compared with the conventional BMPs, the LID is a new concept in urban planning to minimize the impacts of urbanization for site-specific LID IMPs. The objective of this study is to analyze the efficiency of LID adoption in study watershed in peak rate runoff and runoff volume reduction perspectives. The analysis revealed that the peak rate runoff and runoff volume decreased significantly with the LID adoption. This indicates that the Bimodal tram route with grass installed at the center of the road will contribute reduction in surface runoff and peak rate runoff, and also in NPS pollutant generation from the Bimodal tram route.

  • PDF

Effects of Rain Garden on Reduction of Subsurface Runoff and Peak Flow (레인가든이 지하유출 및 첨두유량 감소에 미치는 효과)

  • Kim, Changsoo;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.69-79
    • /
    • 2011
  • This study assessed the subsurface runoff and peak flow reduction in rain gardens. The results showed that the highest water retention was found in rain garden mesocosms in which Rhododendron lateritium and Zoysia japonica were planted, followed by mesocosms in which either R. lateritium or Z. japonica was planted, and the lowest water retention rate was found in non-vegetated control treatment mesocosms(${\alpha}$ < 0.05). Although higher rainfall intensity caused a decrease of peak flow reduction in both vegetated and non-vegetated treatments, peak flow reduction was the greatest in mesocosms with mixed plants. A rain garden can be an effective tool for environment-friendly stormwater management and improving ecological functions in urban areas. Depending on the purpose such as delaying runoff or increasing infiltration, various plant types should be considered for rain garden designing.

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

Runoff Reduction Effect of Rainwater Retentive Green roof (저류형 옥상녹화의 우수유출저감에 대한 연구)

  • Baek, So-Young;Kim, Hyun-Woo;Kim, Mi-Kyeong;Han, Moo-Young
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • Purpose: There is a growing interest in rainwater runoff reduction effect of green roof, as flooding caused by increasing impervious surface is becoming more and more frequent in urban areas. This study was conducted to prove runoff reduction and runoff delay effect of the retentive green roof and to investigate its influencing factors to the rainfall events that occurred in the summer of 2013. Method: The experiment intended to monitor the runoff quantity of the retentive green roof($140m^2$) and normal roof($100m^2$) in #35 building in Seoul National University, Seoul, Korea for 75 days in 2013. Result: On analysis of 9 rainfall events, it showed that the retentive green roof has 24.8~100% of runoff reduction ratio, 21.2~100% of peak flow reduction ratio, 0.5~3.75 hours of peak delay, and $1.8{\sim}7.2m^3$ of retaining capacity in an area of $140m^2$. It shows different results depending on rainfall and antecedent dry days. The results show that runoff reduction effect is effective when the rainfall is less than 50 mm and antecedent dry day is longer than five days on average. By installing retentive green roofs on buildings, it can help mitigate urban floods and rehabilitate urban water cycle.

An Application of Infiltration Facilities for Reducing the Runoff in the Basin (유출저감을 위한 유역내 침투시설의 적용)

  • Lee, Jae-Joon;Seol, Ji-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.133-141
    • /
    • 2011
  • Urban development of basin causes increasing runoff volume and peak flowrate and shortening in time of concentration, which may cause frequent flooding downstream. An infiltration facilities are operated as a method of reducing flood discharge of urban rivers and peak flowrate. There are various types of infiltration facilities like infiltration trench and porous pavement. In this study, runoff reduction effect due to installation of infiltration facilities are performed and focused on $0.18km^2$ residential area of Ok-kye dong and $0.67km^2$ industrial area of Gong-dan dong in Gumi City. The analysis is fulfilled with comparison of total runoff volume and runoff reduction volume by using the WinSLAMM and the relation equation between area ratio of infiltration facilities and ratio of runoff reduction are derived and peak flow reduction effect for installation of infiltration facilities is analyzed.

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.

An Analysis of Runoff Reduction Effect of Infiltration Facilities in Urban Area (도시유역에서 침투시설의 우수유출저감효과 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae;Lee, Sang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.628-631
    • /
    • 2007
  • One of the structural measures for the peak flow reduction is infiltration facilities. There are many types in infiltration facilities - infiltration basin, trench, bed, porous pavement, percolated subdrain, dry well. In this study runoff reduction effect of infiltration trench is analyzed by WinSLAMM. Runoff reduction effect is investigated by each design rainfall and temporal pattern of rainfall particularly. The biggest reduction is shown in Yen and Chow's temporal pattern of design rainfall and the smallest reduction is shown in Huff's first quartile pattern. Runoff reduction rate is presented about 6 to 14 percentage, and the larger return period, the smaller runoff reduction rate.

  • PDF

Analysis of Rainfall Runoff Reduction Effect Depending upon the Location of Detention Pond in Urban Area (도시유역 저류지 위치에 따른 우수유출저감효과 분석)

  • Lee, Jae Joon;Kim, Ho Nyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.535-546
    • /
    • 2008
  • Urbanization results in increased runoff volume and flowrate and shortening in time of concentration, which may cause frequent flooding downstream. The retardation structures are used to eliminate adverse downstream effects of urban stormwater runoff. There are various types of flow retardation measures include detention basin, retention basin, and infiltration basin. In this study, to present a rough standard about location of detention pond for attenuating peak flow of urban area, the runoff reduction effect is analyzed at outlet point when detention pond is located to upstream drainage than outlet. The runoff reduction effects are analyzed under the three assumed basins. These basins have longitudinal shape (SF = 0. 204), concentration shape (SF = 0. 782), and middle shape (SF = 0.567). Numerous variables in connection with the storage effect of detention pond and the runoff reduction effects are analyzed by changing the location of detention pond. To analyze runoff reduction effect by location of single detention pond, Dimensionless Upstream Area Ratio (DUAR) is changed to 20%, 40%, 60%, and 80% according to the basin shape. In case of multiple detention pond, DUAR is changed to 60%, 80%, 100%, 120%, and 140% only under the middle shape basin (SF = 0.567). Related figures and regression equations to determine the location of detention pond are obtained from above analysis of two cases in this study. These results can be used to determine the location of appropriate detention pond corresponding to the any runoff reduction such as storage ratio and peak flow ratio in urban watershed.

Estimating the Variation of Peak Flow Considering the Runoff Characteristics in Paddies From Small Agricultural Watersheds. (논의 유출특성을 고려한 소유역의 홍수유출변화추정)

  • 김철겸;박승우;임상준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.525-530
    • /
    • 1999
  • A modified SCS TR-20 model that may be applied to a watershed having rice paddies as a land use type, was formulated and applied to a gauaged watershed. The model was applied to the Balan watershed of 26$\textrm{km}^2$ in size for estimation strorm hydrographs . And the simulation results from the model were also compared with thoses from the SCS model. The results showed that paddy fields play an important role to reduce peak runoff. When fractions of paddies are left to fallow conditions or when rice crop is replaced by other, the peak runoff was found to increase up to 10 to 20 percentg . The reduction rates in peak runoff appear to become greater for heavier storms or higher antecedent moisture conditions.

  • PDF