• 제목/요약/키워드: Peak Pressure

검색결과 1,460건 처리시간 0.026초

매질이 다른 무한 실린더에 의한 음의 산란 (Scattering Sound by a Flexinble Cylindrical Cavity)

  • 김유만;이병호
    • 한국음향학회지
    • /
    • 제7권4호
    • /
    • pp.117-126
    • /
    • 1988
  • 산란된 파동의 형태는 그 산란체의 기하학적 형상 및 위치에 따라 변한다. 본 논문에서는 매질 내에 임피던스를 가지는 무한 실린더가 있는 경우 평면 입사파에 대한 산란된 파동을 유도하였고 그 결과로부터 산란된 파동의 방향성을 나타내는 지표로서 전방 산란파의 peak 값에 대해 산란파의 크기가 반으로 떨어지는 각도를 구하였다. 이 각도를 검토해 본 결과 입사파의 주파수 및 거리에 따라 그 각의 변화가 뚜렷함을 볼 수 있었다. 따라서 매질 내에 어떠한 산란체가 있는 경우 이 각도가 산란체의 위치 및 형상을 추정하는데 유용하게 적용될 수 있을 것이라 생각된다.

  • PDF

덤프형 가스터빈 연소기에서의 화염 불안정성의 사전 감지 인자 (Pre-detection Parameter of the Combustion Instabilities in the Gas Turbine Combustor)

  • 이병준
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.750-756
    • /
    • 2002
  • The effect of equivalence ratio and velocity on the stability of flame in dump combustor was studied in an atmospheric pressure, laboratory scathe dump combustor operating natural gas. Traditionally, peak-to-peak pressure, fluctuation of the heat release rate and Rayleigh index were used to find and control the combustion instability. Cross correlation coefficients, Ci,j which is defined as the normalized value of the integration of the product of two of the mixer pressure, dump plane pressure and heat release rate, are introduced to see whether the flame is stable or not. Ci,j shows more sensitive to combustion status than Rayleigh index in steadily burning flame. Also, the result indicates that the amplitude of Ci,j between heat release and mixer pressure goes up before the flame at the rich de-stabilizing equivalence ratio near $\psi$=0.85. t means Ci:j at this case has a potential to detect the de-stablizing moment in prior to becoming unstable in dump combustor.

갑상선 수술 후 성대마비 환자의 기식 음성에 대한 공기역학적 및 음향적 분석 (An Aerodynamic and Acoustic Analysis of the Breathy Voice of Thyroidectomy Patients)

  • 강영애;윤규철;김재옥
    • 말소리와 음성과학
    • /
    • 제4권2호
    • /
    • pp.95-104
    • /
    • 2012
  • Thyroidectomy patients may have vocal paralysis or paresis, resulting in a breathy voice. The aim of this study was to investigate the aerodynamic and acoustic characteristics of a breathy voice in thyroidectomy patients. Thirty-five subjects who have vocal paralysis after thyroidectomy participated in this study. According to perceptual judgements by three speech pathologists and one phonetic scholar, subjects were divided into two groups: breathy voice group (n = 21) and non-breathy voice group (n = 14). Aerodynamic analysis was conducted by three tasks (Voicing Efficiency, Maximum Sustained Phonation, Vital Capacity) and acoustic analysis was measured during Maximum Sustained Phonation task. The breathy voice group had significantly higher subglottal pressure and more pathological voice characteristics than the non breathy voice group. Showing 94.1% classification accuracy in result logistic regression of aerodynamic analysis, the predictor parameters for breathiness were maximum sound pressure level, sound pressure level range, phonation time of Maximum Sustained Phonation task and Pitch range, peak air pressure, and mean peak air pressure of Voicing Efficiency task. Classification accuracy of acoustic logistic regression was 88.6%, and five frequency perturbation parameters were shown as predictors. Vocal paralysis creates air turbulence at the glottis. It fluctuates frequency-related parameters and increases aspiration in high frequency areas. These changes determine perceptual breathiness.

갈색 Type I 다이아몬드의 고압 열처리에 따른 표면 흑연화 생성 연구 (Surface Graphite Formation of the Brown Colored Type I Diamonds During High Pressure Annealing)

  • 송정호;송오성
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.614-619
    • /
    • 2012
  • We investigated color and graphite layer formation on the surface of Type I tinted brown diamonds exposed for 5 minutes under a high-pressure high-temperature (HPHT) condition in a stable graphite regime. We executed the HPHT processes of Process I, varying the temperature from $1600^{\circ}C$ to $2300^{\circ}C$ under 5.2 GPa pressure for 5 minutes, and Process II, varying the pressure from 4.2 to 5.7 GPa at $2150^{\circ}C$ for 5 minutes. Optical microscopy and micro-Raman spectroscopy were used to check the microstructure and surface layer phase evolution. For Process I, we observed a color change to vivid yellow and greenish yellow and the growth of a graphite layer as the temperature increased. For Process II, the graphite layer thickness increased as the pressure decreased. We also confirmed by 531 nm micro-Raman spectroscopy that all diamonds showed a $1440cm^{-1}$ characteristic peak, which remained even after HPHT annealing. The results implied that HPHT-treated colored diamonds can be distinguished from natural stones by checking for the existence of the $1440cm^{-1}$ peak with 531 nm micro-Raman spectroscopy.

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • 제34권2호
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

활로씨 4 증후군에 폐동맥크기가 수술후 우심실압력에 미치는 영향 (Effect of Pulmonary Arterial Size on Postoperative Right Ventricular Pressure in Tetralogy of Fallot)

  • 김용진
    • Journal of Chest Surgery
    • /
    • 제21권5호
    • /
    • pp.828-841
    • /
    • 1988
  • To predict the postoperative hemodynamic status of right ventricle preoperatively, a retrospective analysis was undertaken to determine the influence of pulmonary artery size on postoperative right ventricular pressure in 32 consecutive patients with tetralogy of Fallot who underwent total correction between July, 1987 to June, 1988 at the Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital. We have related the ratio of the postrepair peak systolic pressure in the right ventricle and the systemic systolic arterial pressure[PRV/Ao] to the preoperative cineangiographic measurement of pulmonary arterial tree, expressed as pulmonary artery index[PAI], the ratio of diameter of the right pulmonary artery to diameter of ascending aorta[r.PA/A.Ao], the ratio of right and left pulmonary artery to diameter of descending aorta[r.I.PA/D.Ao] There was tendency that the postrepair PRV/Ao seems to be related to the preoperative diameter of right and left pulmonary artery, but there were no statistically significant correlation with PAI, r.PA/A.Ao, r.l.PA/D. Ao to the ratio of the postoperative peak systolic right ventricular pressure and systemic systolic arterial pressure[PRV/Ao]. There was tendency to decrease the postoperative right ventricular pressure[PRV/Ao] about 11.2%[P < 0.025] within several hours than immediately after repair, but after then, there was no change of right ventricular pressure[PRV/Ao] significantly. There was good correlation of pressure change between the immediate and late postrepair right ventricular pressure[48 hour], and the derived linear regression line was; y=0.68534 0.1994[r=0.57294, P < 0.001]. There was no operative death due to residual high right ventricular pressure[PRV/Ao >0.75] related to hypoplastic pulmonary arterial development, thus we expect, for symptomatic patients even infants, that complete repair can be attempted when the pulmonary artery index[PAI] is over 108mm2/BSA, RPA/AAo is over 0.35, RPA LPA/D. Ao is over 1.36.

  • PDF

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • 제39권6호
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造 (Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근;박시현;손진군
    • 자원리싸이클링
    • /
    • 제13권6호
    • /
    • pp.16-25
    • /
    • 2004
  • 인듐 성분을 포함하는 원료용액을 분무열분해 시켜서 평균 입자크기 100 nm 이하의 인듐 산화물 나노 분말을 제조하였으며, 용액의 농도, nozzle tip 크기 및 공기의 유입속도 변화에 따른 생성된 분말들의 특성 변화를 파악하였다. 본 연구는 폐 ITO로부터 나노 크기의 ITO 분말을 제조하기 위한 전 단계 연구로 수행되었다. 원료용액 내의 인듐 성분의 농도가 40 g/l로부터 350 g/l로 증가됨에 따라 생성된 분말의 평균 입자크기는 20~30 nm로부터 50~60 nm로 점점 증가하는 반면 입도분포는 더욱 불균일하게 나타나고 있었으며, XRD peak의 강도는 점점 증가하고 비표면적은 감소되었다. Nozzle tip의 크기가 1 mm로부터 5 mm로 증가함에 따라 분말들의 평균 입자크기는 40 nm 정도로부터 100 nm 정도까지 점점 증가하고 입도분포는 더욱 불균일하게 나타나고 있었으며, XRD peak 강도는 증가하는 반면 비표면적은 감소되었다. 반응로 내로 유입되는 공기의 압력이 0.1 kg/cm$^2$로부터 0.5 kg/cm$^2$로 증가되는 경우, 분말의 평균 입자크기는 90~100 nm로 현저한 변화를 나타내지 않았다. 반면 공기압력이 1 kg/cm$^2$ 및 3 kg/cm$^2$로 증가하는 경우에는 평균 입자크기가 50~60 nm 정도까지 감소하였으며, XRD peak 강도는 감소하고 비표면적은 증가되었다.

Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller

  • Kobayashi, Katsutoshi;Chiba, Yoshimasa
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권2호
    • /
    • pp.113-121
    • /
    • 2010
  • LES(Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with -10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.

Effect of water partial pressure on the texture and the morphology of MOD-YBCO films on buffered metal tapes

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권2호
    • /
    • pp.23-26
    • /
    • 2007
  • The influence of water partial pressure in Metal-organic Deposition (MOD) method was investigated on the texture and the morphology of $YBa_2Cu_3O_{7-x}$ (YBCO) films grown on the buffered metal tapes. The water partial pressure was varied from 4.2% up to 10.0% with the other process variables, such as annealing temperature and oxygen partial pressure, kept constant. In this work, the fluorine-free Y & Cu precursor solution added with Sm was synthesized and coated by the continuous slot-die coating & calcination step. The next annealing step of the YBCO films was done by the reel-to-reel method with the gas flowed vertically down. From the x-ray diffraction analysis, the un-reacted phase like $BaF_2$ peak was found at the water partial pressure of 4.2%, but $BaF_2$ peak intensity is much reduced as the water partial pressure is increased. However, the higher water partial pressure of about 10% in this experiment leads to the poor crystallinity of YBCO films. The morphologies of the YBCO films were not different from each other when the water partial pressure was varied in this work. The maximum critical current density of 3.8MA/$cm^2$ was obtained at the water partial pressure of 6.2% with the annealing temperature of 780$^{\circ}C$ and oxygen partial pressure of 500ppm.